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The continual integration method is used to obtain the long-wave asymptotic form
of all the many-body Green’s functions of a one-dimensional Bose gas with a point
interaction.

PACS numbers: 05.30.Jp

A one-dimensional Bose gas with point interaction is a completely integrable
dynamic system. The corresponding nonlinear quantum Schridinger equation can be
solved by using the Bethe formulation' and the quantum inverse problem method.’
Now the time has come to determine the Green’s functions of completely integrable
systems. The far this problem has been solved only for a system of impermeable
bosons>*—a Bose gas with an infinitely large interaction constant.
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In this paper we shall determine the asymptotic form of all the many-body
Green’s functions

S@le, o) el t )P le] 2] ) ¥z, £ )> (1)
for a Bose gas with an arbitrary interaction constant for 7= 0 in the limit |x, — x|
—» . This method, previously developed®*® for describing two-dimensional and one-
dimensional superfiuid systems (see also Ref. 7), allows us to calculate the asymptotic
form of the average (1) in the Euclidean region (with the substitution t—ir). After

defining
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ei=1,i=1,...,n;ei=—1,i=n+1, veer 21 4

we can write the basic result for the Green’s function (1) in the Euclidean region in the
form
-e.e.
H(G(zi—-zj)) v ®
i<j

Here G (z; — z;) is the one-particle Green’s function which at large |z; — z;| has the
asymptotic form

, O)

y =me/2nmp. Q)

In Eqgs. (6) and (7) m is ths mass of the Bose particle, p is the density of the system,
and c is the velocity of sound. The constant R was chosen in such a way that the
coefficient in front of |(z, — z;)/R | ~ 7 in (6) would be equal to p. The asymptotic form
(6) for the one-particle function and the exponent (7) were obtained in Ref. 5. Equa-
tion (5) generalizes the asymptotic form (6) to the case of the n-body Green’s function.
We can interpret (5) as the distribution function of a system of 2n two-dimensional
Coulomb charges e¢; = + 1 that are located at points with the complex coordinates z,
= X; + icT; at a temperature y.

For the derivation of Eq. (5) we write the average (1) as a continuous integral
with respect to the field ¥(x,7), ¥(x,7) and integrate with respect to fast and slow
variables.”® After integration with respect to the fast fields, we can write the average
(1) in the Euclidean region in the form

» s
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Here 1, and ¥, are the slow fields with Fourier components of less than some k,, and
(...)o represents an averaging over the slow fields with a weight expS,, where S, is the
hydrodynamic action function that was calculated in Refs. 5 and 6.

In the integral with respect to the slow fields we switch to the phase-density
variables

bleosr ) =pV 2, )i 0T )y ) < V2 )emib (5t ) g !
)

and we take S, in the quadratic form®

dndr (= P (5 4y _ Pee 2 L 1 2

flrdr (- 5 (3,8)2 = 5 (3,8)" +ipgynd d+3pp, 7 ) - (10)
Here

mlx,r) =plx,r) —p (k) ¢8))

and py(k,) is determined by the condition dp/dp, = 0, where p = S, /BV is calculated
for ¢ (x,7) =0, p(x,7) = p, = const. The coefficients p,, p,,, p,,,, and p,, are the
derivatives of p with respect to the chemical potential i« and the variable p,. In the one-
dimensional case for T'= 0 the values py(k,), which is proportional to k J vanishes as
k,—0. However, it is significant that pglk,) exists for all k, different from zero. This
leads to the functional S, {10) characteristic of superfluid Bose system.

We rewrite the average (8) in the variables ¢ and 7

2n 2n
172 :
< [p, (ky) +m(z;)1/% expi X e; p(z;)>, . (12)
i=1 i=1
¢
The values 7(z;), which are small compared with py(k,), do not contribute to the first
term of the asymptotic form, so that in a first approximation the first averaged factor
in Eq. (12) is equal to [py(ko)]". Taking S, in the quadratic from (10), we obtain a
Gaussian integral. As a result, for the average (12) we obtain
1 2
n
(po (ko)) exp(— 2— < (‘2 e; ¢ (zi)) >‘)_—.
; 2
(p, (k)" exp{ - dhdw gyy (h o) |Se, o' @ ¥51 7
2Qn)? | k|<k, i
13)
where
(k) o) =
4 y @ = ——— ‘
% e
2 (19

is the correlator of (¢¢ ), in the (k,») representation. We note that Eq. (14) of the g,
function is independent of the dimension of the system. After calculating the exponent
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in (13) in the limit |z, — z;|~> 0, We obtain instead of (13)

(p, (k,))" exp{ —yn (Ink R +C) +yZ ee; In(lz;, - z |/R )} . (15)
i<j
Here y is the exponent of (7), C is the Euler constant, and R is the length constant [in
fact Eq. (14) does not depend on thce choice of R ]. Since (15) must be independent of

the auxiliary parameter k,,0,(k,) must be proportional to k }. Let us now choose R in
such a way that the following equation will be valid:

py (k) = p(k R)YeYC (16),

Substitution of (16) in (13) gives the basic result (5).

The value of R can be calculated in the limit »—0 corresponding to a Bose gas
with a weak interaction (large density), which is opposite to the case of impermeable
bosons, where the coupling constant is infinite and y = 4. In the limit y—0.

R=(4mc)yle?-C) < 1,037 (mc )-L. (17)
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