Long-wave asymptotic form of the many-body Green's functions of a one-dimensional Bose gas

V. N. Popov

Leningrad Branch of the V. A. Steklov Mathematics Institute

(Submitted March 3, 1980)

Pis'ma Zh. Eksp. Teor. Fiz. 31, No. 9, 560-563 (5 May 1980)

The continual integration method is used to obtain the long-wave asymptotic form of all the many-body Green's functions of a one-dimensional Bose gas with a point interaction.

PACS numbers: 05.30.Jp

A one-dimensional Bose gas with point interaction is a completely integrable dynamic system. The corresponding nonlinear quantum Schrödinger equation can be solved by using the Bethe formulation¹ and the quantum inverse problem method.² Now the time has come to determine the Green's functions of completely integrable systems. The far this problem has been solved only for a system of impermeable bosons^{3,4}—a Bose gas with an infinitely large interaction constant.

In this paper we shall determine the asymptotic form of all the many-body Green's functions

$$\langle \psi(x_1, t_1) \dots \psi(x_n, t_n) \overline{\psi}(x_1', t_1') \dots \overline{\psi}(x_n', t_n') \rangle$$
 (1)

for a Bose gas with an arbitrary interaction constant for T = 0 in the limit $|x_i - x_j|$ $\rightarrow \infty$. This method, previously developed^{5,6} for describing two-dimensional and onedimensional superfluid systems (see also Ref. 7), allows us to calculate the asymptotic form of the average (1) in the Euclidean region (with the substitution $t \rightarrow i\tau$). After defining

$$z_i = (x_i, \tau_i), z_{n+i} = (x_i, \tau_i), i = 1, ..., n;$$
 (2)

$$|z_i - z_j|^2 = (x_i - x_j)^2 + c^2(r_i - r_j)^2,$$
 (3)

$$e_i = 1, i = 1, ..., n; e_i = -1, i = n + 1, ..., 2n$$
 (4)

we can write the basic result for the Green's function (1) in the Euclidean region in the form

$$\prod_{i < j} (G(z_i - z_j))^{-e_i e_j}$$

$$(5)$$

Here $G(z_i - z_i)$ is the one-particle Green's function which at large $|z_i - z_i|$ has the asymptotic form

$$G(z_i - z_j) \approx \rho \left| \frac{z_i - z_j}{R} \right|^{-\gamma},$$
 (6)

$$\gamma = mc / 2\pi\rho. ag{7}$$

In Eqs. (6) and (7) m is the mass of the Bose particle, ρ is the density of the system, and c is the velocity of sound. The constant R was chosen in such a way that the coefficient in front of $|(z_i - z_i)/R|^{-\gamma}$ in (6) would be equal to ρ . The asymptotic form (6) for the one-particle function and the exponent (7) were obtained in Ref. 5. Equation (5) generalizes the asymptotic form (6) to the case of the *n*-body Green's function. We can interpret (5) as the distribution function of a system of 2n two-dimensional Coulomb charges $e_i = \pm 1$ that are located at points with the complex coordinates z_i $= x_i + ic\tau_i$ at a temperature γ .

For the derivation of Eq. (5) we write the average (1) as a continuous integral with respect to the field $\psi(x,\tau)$, $\bar{\psi}(x,\tau)$ and integrate with respect to fast and slow variables.^{5,6} After integration with respect to the fast fields, we can write the average (1) in the Euclidean region in the form

$$\langle \psi_{o}(x_{1}, \tau_{1}) \dots \psi_{o}(x_{n}, \tau_{n}) \overline{\psi_{o}}(x_{1}, \tau_{1}) \dots \overline{\psi_{o}}(x_{n}, \tau_{n}) \rangle_{o}.$$
 (8)

Here ψ_0 and $\bar{\psi}_0$ are the slow fields with Fourier components of less than some k_0 and $\langle ... \rangle_0$ represents an averaging over the slow fields with a weight $\exp S_h$, where S_h is the hydrodynamic action function that was calculated in Refs. 5 and 6.

In the integral with respect to the slow fields we switch to the phase-density variables

$$\psi_{0}(x,\tau) = \rho^{1/2}(x,\tau)e^{i\phi(x,\tau)}, \ \overline{\psi_{0}}(x,\tau) = \rho^{1/2}(x,\tau)e^{-i\phi(x,\tau)}, \ (9)$$

and we take S_h in the quadratic form⁶

$$\int dx \, d\tau \left(-\frac{p_{\mu}}{2\,m} \left(\partial_x \phi \right)^2 - \frac{p_{\mu\mu}}{2} \left(\partial_\tau \phi \right)^2 + i p_{\mu\rho_o} \pi \, \partial_\tau \phi + \frac{1}{2} p_{\rho_o \rho_o} \pi^2 \right). \quad (10)$$

Here

$$\pi(x,\tau) = \rho(x,\tau) - \rho_c(k_o), \qquad (11)$$

and $\rho_0(k_0)$ is determined by the condition $\partial p/\partial \rho_0=0$, where $\rho=S_h/\beta V$ is calculated for $\phi(x,\tau)=0$, $\rho(x,\tau)=\rho_0=$ const. The coefficients p_μ , $p_{\mu\mu}$, $p_{\mu\rho_0}$, and $p_{\rho_0\rho_0}$ are the derivatives of p with respect to the chemical potential μ and the variable ρ_0 . In the one-dimensional case for T=0 the values $\rho_0(k_0)$, which is proportional to k_0^{γ} vanishes as $k_0\to 0$. However, it is significant that $\rho_0(k_0)$ exists for all k_0 different from zero. This leads to the functional S_h (10) characteristic of superfluid Bose system.

We rewrite the average (8) in the variables ϕ and π

$$< \prod_{i=1}^{2n} [\rho_{o}(k_{o}) + \pi(z_{i})]^{1/2} \exp i \sum_{i=1}^{2n} e_{i} \phi(z_{i}) >_{o}.$$
 (12)

The values $\pi(z_i)$, which are small compared with $\rho_0(k_0)$, do not contribute to the first term of the asymptotic form, so that in a first approximation the first averaged factor in Eq. (12) is equal to $[\rho_0(k_0)]^n$. Taking S_h in the quadratic from (10), we obtain a Gaussian integral. As a result, for the average (12) we obtain

$$(\rho_{o}(k_{o}))^{n} \exp\left(-\frac{1}{2} < (\sum_{i} e_{i} \phi(z_{i}))^{2} > 0\right) =$$

$$(\rho_{o}(k_{c}))^{n} \exp\left\{-\frac{1}{2(2\pi)^{2}} \int_{|k| < k_{o}}^{dk d\omega} g_{\phi}(k, \omega) \left| \sum_{i} e_{i} e^{i(\omega \tau_{i} + k x_{i})} \right|^{2}\right\},$$

$$(13)$$

where

$$g_{\phi\phi}(k,\omega) = \frac{m}{\rho(k^2 + \frac{\omega^2}{c^2})}$$
 (14)

is the correlator of $\langle \phi \phi \rangle_0$ in the (k,ω) representation. We note that Eq. (14) of the $g_{\phi\phi}$ function is independent of the dimension of the system. After calculating the exponent

in (13) in the limit $|z_i - z_j| \rightarrow \infty$, we obtain instead of (13)

$$(\rho_{o}(k_{o}))^{n} \exp \left\{-\gamma n \left(\ln k_{o} R + C\right) + \gamma \sum_{i < j} e_{i} e_{j} \ln \left(|z_{i} - z_{j}|/R\right)\right\}.$$
 (15)

Here γ is the exponent of (7), C is the Euler constant, and R is the length constant [in fact Eq. (14) does not depend on the choice of R]. Since (15) must be independent of the auxiliary parameter $k_0 \rho_0(k_0)$ must be proportional to k_0^{γ} . Let us now choose R in such a way that the following equation will be valid:

$$\rho_{o}(k_{o}) = \rho(k_{o}R)^{\gamma} e^{\gamma C}. \tag{16}$$

Substitution of (16) in (13) gives the basic result (5).

The value of R can be calculated in the limit $\gamma \rightarrow 0$ corresponding to a Bose gas with a weak interaction (large density), which is opposite to the case of impermeable bosons, where the coupling constant is infinite and $\gamma = \frac{1}{2}$. In the limit $\gamma \rightarrow 0$.

$$R = (4 mc)^{-1} e^{(2 - C)} \approx 1.037 (mc)^{-1}.$$
 (17)

¹E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963); E. H. Lieb, Phys. Rev. 130, 1616 (1963).

²E. K. Sklyanin and L. D. Faddeev, Dokl. Akad. Nauk SSSR 243, 1430 (1978) [Sov. Phys. Doklady 23, 902 (1978)]; L. D. Faddev, Preprint LOMI R-2-79.

³A. Lenard, J. Math. Phys. 5, 930 (1964); 7, 1268 (1966).

⁴M. Limbo, T. Miwa, Y. Mori, and M. Sato, Preprint RIMS-309, 1979.

⁵V. N. Popov, Teor. Mat. Fiz. 11, 354 (1972).

⁶V. N. Popov, Kontinual'nye integraly v kvantovoi teorii polya i statisticheskoi fizike (Continual Integrals in Ouantum Field Theory and Stratistical Physics), Atomizdat, Moscow, 1976.

⁷V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1971) [Sov. Phys. JETP 34, 610 (1972)].