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A model of a Peierls dielectric with a small concentration of free carriers in the
conduction band is constructed in the average-field approximation. This model is
used as the basis for analyzing the conductivity mechanism of polyacetylene.

PACS numbers: 72.80.Le, 72.20.Jv

As a result of the discovery of the anomalous properties of polyacetylene (CH),
(see Ref. 1 and the papers cited there and also Ref. 2), an interest has arisen in the
study of the Peierls transition with a doubled period in quasi-one-dimensional
chains.'** A unique feature of this transition is the absence of a charge density wave
(CDWY)’ below the transition point. Because of this, the behavior of such a system in
external fields has a purely semiconductor nature.”? However, even a slight doping of
polyacetylene drastically alters its properties; the authors'?* attributed this to the
appearance of charged solitons (domain walls) in the Peierls lattice. (The possibility of
the formation of such polaron states in the Peierls phase was first investigated in Ref.
6.) For a detailed analysis of the dynamics of these soliton states, it is of considerable
interest to construct a simple model of a Peierls dielectric (PD) with a small concentra-
tion of free carriers in the conduction band.
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As is known, the Peierls transition in one-dimensional metals with one conduc-
tion electron per atom can occur into one of two energy-degenerate phases that differ
in the configuration of the Peierls lattice relative to the original lattice (u,
= +{— 1)"up, where u,, is the displacement of the nth atom and u, is the macroscop-

ic displacement of the lattice ions)."

The electron spectrum in these configurations is defined by the standard expres-
sion (see, for example, Ref. 7)

E(k) = sgn ek) \/Az +e2(k), e€lk)=-Wcoska, (1

where A4, is the energy gap of a homogeneous PD, related to u, by the expression
Al =g Wru}. Here W is the width of the PD conduction band, g is the electron-
lattice coupling constant, « is the lattice elasticity coefficient, and a is the period of the
original lattice. According to Eq. (1), a “free” electron in the conduction band
(p = k — k. <k}, ignoring the polarization of the Peierls lattice (PL), has the relativis-
tic form of the dispersion law E*(p) = 4 § + v} p* (v is the Fermi velocity).

Our goal is to describe phenomenologically the dynamics of a system consisting of
the PL and the “free” carriers interacting with it. In the average-field approximation,
assuming that the displacement u is a weakly varying (over a distance of order a)
function of the coordinates and taking into account the dispersion law of the bare
electrons (1), we have for the energy density of the investigated system

1 2 - d
H:N*__Cg<ii¢_)+_ﬂ-2(¢2_f2)2 +‘P{UF01—— +g*q5§‘l’. (2)

2 dx 4 dx

Here ¢ is a dimensionless scalar field related to 4 by the relation ¢ 2 = A 2/7g’W?,
=640, 2% =w,/2f? v, is the activation frequency of the small amplitude fluctu-
ations of the order parameter (optical phonons®), c, is their phase velocity, and

* = 8¢,/w} 7, where €, is the difference in the energy densities of the system in the
metallic and Peierls phase. The wave functions W(W¥ = W*g) of the conduction elec-
trons are normalized to unity, o; are the Pauli matrices, and g* = (v/mjgW.? In the
phenomenological approach the constants 4,, w,, ¢, €, are arbitrary (determined
from an experiment). Therefore, the energy functional (2) can be used to describe the
electron states of any quasi-one-dimensional system with a real, scalar order param-
eter. Keeping this in mind, we shall obtain general formulas with arbitrary model
constants, and finally we shall discuss the results for a PD, using the parameters
obtained in the microscopic theory (see, for example, Ref. 7).

The equations of motion, corresponding to Eq. (2), has two, qualitatively different
exact solutions (compare with Refs. 8, 9): 1) a domain wall (kink) that links the two
degenerate phases of the PL, and an electron localized on it.

l/2 a
© 4 4 ) - (14 ® 4 1
= -4 y =(__) (1+al/2 A
(o) fth(zcO x) s - 2 sech 200 . (3)

a = 2c,4o/vr0,. The energy of the state is E, = a(16/3)e,co/w,. We obtain from Eq.

611 JETP Lett., Vol. 31, No. 11, 5 June 1980 I. V. Krive and A. S. Rozhavskii 611



f
I P -
4-; ™\ 'wlz /7T
=7 N N - FIG. 1
0 T
P —
——— —_———
- f

{3) a similar solution for the antikink by replacing f— — f and (i) —»( ! ) The
—1i

wave function W(3) describes the filling of a level at the center of the forbidden band
(E = 0); 2) A bound kink-antikink state with a localized electron [the analog of a large-
radius polaron, whose explicit expression can be obtained for @ = 1 (Ref. 8), in the
microscopic theory of a PD7 o =2/v/3].

k2v%-
¢ =11~ A Esech[k(x+ xo)]sech[k(x-—xo)] ) {4)
{ 0 j

- A sech[k(x-xo)]+ sech[k(x+xo)]
V- Y (5

8 sech[k(x-:xo)]—:scch[k(x+xo)]

where .
E2 = A% _ k202 th2kx = " v kA% - k22 2 6
= 0 F» t xo = ’ \/ o - k UF = -i———z—- . ( )
0 bug e,

The energy of the states (4) and (5), which is related to the kink energy (3), is a function
of the parameter ¥ = 4,/2E,

Ey : 2 )3/3 2 )3/1 )
—ES- = (+"'§'Y (1-“3‘}’ . (

The value y defines the ratio of the minimum energy of a “free” electron in the
conduction band (E = 4,) to the energy of the most strongly bound electron-lattice
states (E = 0). It is physically clear that at <1 the electron polarizes the lattice slight-
ly and alters negligibly the energy gap. At ¥ 51 the gap distortion is of the order of its
equilibrium value. When 1 < ¢ < 3/2, the “polaron” phase {4) and (5), which is metasta-
ble, decays by tunneling to the kink-antikink state (see Fig. 1). At y>3/2 the “po-
laron” states are missing.
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Using the macroscopic values of the energy functional (2), we have E|
= (8/3mVv/3)4,, ¥R 1. Therefore, by disregarding the metastable states we can say that
doping of the (CH), -type PD is necessarily accompanied by a severe lattice distortion,
and the free charges are always bound at the kinks and antikinks.

Thus far we were discussing the states of a single, “surplus” electron in the PL. A
soliton lattice, whose period can be related to the concentration,* can be produced in
the PD, if the concentration of doped electrons is sufficiently high. In fact, at ¥ > 1 the
kink and antikink always repel each other at distances x,»v:/4,. This is essentially
the reason for metastability of the polaron solutions.

The simplest, exact periodic solution for displacement of the PL ions and for the
electron wave function has the form

/[ 2k2
= - sn( vy}, k); Y= c(k)ldn(y; k) + kenly; k) }a, (8)

1+ %

where sny, cny, and dny are the elliptic functions of the modulus %,
Y =Xx0, /c(,\/ 2(1 + k2, and c(k) is a normalization constant determined from the
equation

D(k) *
[ W Wdx=1; D(k)=4K(k)y2(1 +k?)

o

4
0

)

@y

[K (k) is a complete first-order elliptic integral.] The periodic solution ¢ (8) was used in
Ref. 4 to determine the critical concentration of impurity atoms at which the transi-
tion of the PD to the metallic phase occurs. We note that, disregarding the fermions,
this unstable'? solution can be stabilized for ¥ > 1 according to the dynamics of the
doped charges in the Peierls lattice described above.

The authors thank S. A. Brazovskii, L. N. Bulaevskii, I. O. Kulik, and D. 1.
Khomskii for their interest in this work and for useful discussions.

YWe note that a lattice doubling is energetically advantageous’ for a concentration £ of conduction electrons
per atom close to unity |1 — & |54 /W. The “excess” electrons in this case enter the conduction band.

It is of interest to note that the examined model has been investigated by many authors®® in connection
with the quark-confinement problem; the microscopic theory of the electronic states in a PD *'° turned out
to be similar to the Gross-Neveau field model.'!
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