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A study of the singularities and zeros of the generating functions of the multiplicity
distributions is advocated. Some hints from well-known probability

distributions and experimental data are given. The statistical mechanics analogies
call for a look for a signature of the phase transitions. A program for

further experimental studies of the singularities is formulated. © 1994 American
Institute of Physics.

Multiplicity distributions in high-energy collisions of various projectiles and targets
have a qualitatively similar (but quantitatively different!) behavior. That is why many fits
by well-known probability distributions have been tried. The progressively more sensitive
characteristics, such as the ratio of the cumulant to factorial moments, which reveal new
features in the experimental data,” have been proposed.! Their understanding requires
further experimental and theoretical studies. We suggest that more attention should be
focused on the structure of singularities and zeros of the generating functions of the
multiplicity distributions, which is especially appealing because of the possible statistical
analogies.>~®

We define the generating function G(z) of the probability distribution P, by the
relation

G(z)=2 (1+2)"P,. (1)
n=0

In what follows, we often use the function
®(z)=In G(z). (2)

The (normalized) factorial (F,) and the cumulant (K,;) moments of the distribution P,
are related to them by the formulas

G(z)= D, a{an (Fo=F,=1), 3)
g=0 *°
> q

o(2)=3 ;—,<n>"Kq (K,=1), @)
g=1 7’

where (n) is the average multiplicity.

First, we consider certain distributions which give analytical examples of the singu-
larities. We start with the fixed multiplicity (FM) distribution, when the sample of events
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of the same multiplicity (n,) is chosen. We then proceed to the Poisson distribution (P)
as a reference to independent emission processes and, finally, consider the gamma (I'),
the negative binomial (NB), and the lognormal (L) distributions which are widely used
to fit the experimental data at high energies. The corresponding functions ®(z) are

OFM(z)=nln(1+2), (5)
&P (2)=(n), (6)
®'(z)=—puln 1—<—:->—1n(1+z) , (7)
dNB(2)= —kln(l—z<k—n>), (8)

where u and & are the adjustable parameters. The lognormal distribution is the only one
which is not determined by its moments. From the integral representation of its generat-
ing function,

=3

dL(z)—— lnf exp
0

(In x—v)?
————i?—+xln(l+z) d(ln x)’ (9)

we easily see that its convergence radius is given by the inequality
|z+1|,=<1; (10)

i.e., the singularities come close to the point z=0, but they are “soft” in the sense that
the normalization condition G(0)=1 persists. For other distributions the nontrivial (es-
sential for our purposes) singularities are situated at

zyp=k/{(n), (11)
zp=exp(p/(n))—1, (12)
Zp=00, (13)
zpy=—1. (14)

We note that NB and I singularities are close to z=0 if the parameters k and w are much
less than (n). It is especially interesting because the factorial and the cumulant moments
are calculated as the gth derivatives of G(z) and ®(z) at that point and the nearby
singularity influences their behavior substantially. In particular, it is important that the
ratio of the moments

H,=KF,, (15)

which is identically equal to zero for the Poisson distribution, alternate sign at each rank
in the case of fixed multiplicity, and that it always be positive for I" and NB, which tend
at asymptotically large ranks to zero as,’ ¢~ *. Different types of behavior are predicted in
QCD with a strong decrease at low ranks, followed by (quasi)oscillations at larger
ranks."”® It would be interesting to determine what singularity governs such a shape.
This problem has not yet been solved.
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Let us set up some guidelines for the experimental data. In experiments with differ-
ent projectiles and targets the adjustable parameters are different and energy dependent.
We can nevertheless obtain a qualitative estimate of the approximate locations of the
singular points. In the e e~ collisions, the NB estimates give rise to k/(n)~1 (see, e.g.,
Ref. 9) and, therefore, the singularity is situated at z,,~ 1, i.e., rather far from z=0. It is
much closer to the origin in the hh collisions, where (see, e.g., Ref. 10) k/(n)~10*1.
The AA data are not so definite'! (even though the lower statistics is slightly compensated
for by the larger multiplicity) and give rise to k/(n)<10""! and, thus, to ever closer (to
the origin) singularity. The singularitics move to the origin with an increase in energy.
These qualitative tendencies are probably related to similar regularities in the behavior of
the depth of the minimum of H, found for various reactions (see Refs. 2 and 11) and to
oscillations of H, at large g (see below). The oscillations of experimental distributions
about the smooth NB fit (see, e.g., Ref. 9) also could be connected with those oscillations.
Their physical meaning could correspond to various objects (ladders, etc.) which contrib-
ute to different multiplicities and which should be checked in the Monte Carlo models.
Another possible source of oscillations due to the cutoff of the multiplicity tail by the
conservation laws should die out asymptotically.'?

However, this cutoff plays an important role when one tries to restore the generating
function directly from experimental data. Actually, the series (1) is replaced now by the
partial sum in the form of the polynomial in z:

N

Gy(z)=2, (1+2)"P, (16)
n=0

with N equal to the highest observed multiplicity. Therefore, the truncated generating
function G y(z) has N complex conjugate zeros,

N
Gu(z)=]1 (1—;). (17)

j=1 J

It was shown by DeWolf!? that the zeros cover a circle in the complex z plane for the ee
events generated by JETSET Monte Carlo program at 1000 GeV. It reminds us of the
Lee—Yang zeros® in statistical mechanics. They seem to close in onto the singularity of
G(z) at some real z=z,>0 as N increases.

It is known!* that the degree of infinity k of G(z,) is the same as the order of
singularity of G(z) at z=z, in the case of algebraic-logarithmic behavior and (for the

algebraic singularity) is determined by the slope on the double-log plot in the limit
N-—oo:

In Gy(z;)—k In N+1In[A,/T'(k+1)]. (18)
Here A, is the residue of G(z) at z=z,; (NBD gives an example; see Ref. 8).
Also, the order p of the integer function is given' by the formula

—In P,(1+z)" 1

,,h_I.Iolc nlnn p’ (19)
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The formulas given above can be used to interpret experimenta} data.

The cumulants are determined™'® by the moments of zero locations,

—1)r 9,
K= - 22 (q 1) 2 cos g i (20)

Sia P i =

where we denote z;=r; exp(i#;). Thus, the oscillations mentioned above are related to
the phases of zeros.

The study of singularities of the generating function becomes more beneficial if one
uses statistical mechanics analogies and recalls the Feynman fluid model.*~® The gener-
ating function is analogous to the partition function of the grand canonical ensemble and
®(z) is analogous to the free energy. The total rapidity range plays the role of the volume
and the variable 1+z is the fugacity. The “pressure” p(z) and the mean number of
particles at a given fugacity (n(z)) (which is proportional to the usual pressure and
density) can be defined by the formulas

Dy
P(Z)*)!Lﬁl v (21)
Iy
(n(2))y=(1+2z)— (22)

dz ’

where ®y(z)=1n G y(z) and (n(0))y=(n). We note that the behavior of (n(z))y in the
complex z plane, which was determined from the experimental data, should easily reveal
the zeros z; of the function G (Ref. 5), since it has poles exactly at the same loci z;

(n(z))n 2

l+z

(23)

The plots of p(z) from experimental data for ee and hh reactions extrapolated to Y — o
were shown in Ref. 6. We found that the latest LEP data (e.g., Ref. 9) coincide well with
the extrapolation used in Ref. 6 before the LEP data became available. The authors of
Ref. 6 claim that there is no phase transition in the ee collisions. A qualitative conclusion
from Figs. 3a and 3b of Ref. 6 is that p(z) increases at z>0 much faster in the non-
diffractive hh collisions as compared to the ee collisions. It demonstrates that the kh
singularity is closer to the origin that corresponds to the conclusions reached above. The
increase would be even more drastic in the case of AA collisions [the data of EMUO1
(Ref. 11) were used for estimates], but it is strongly influenced by single events with very
high multiplicity. Thus the AA analysis is hard to extend to large z. Probably, it has a
physical origin, since the AA collisions are most likely responsible for the phase transi-
tions. The constancy of p(z) at z<<O for hh collisions in Fig. 3b of Ref. 6 is quite
unexpected. In statistical mechanics it would be a signature for a phase transition. If
supported by further studies, it would justify theoretical speculations. The problem of
phase transition in systems with relatively small number of particles should be treated
carefully. In particular, it depends on the steepness of the increase of p(z) with z. Some
of its criteria are yet to be published. However, the similarities may well turn out to be
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mainly of formal nature and just the methods of analysis may be comparable. Neverthe-
less, some physical models based on the analogy have been proposed.'¢~1*

Our preliminary qualitative results allow us to formulate a further program of analy-
sis of experimental data, which consists of determining:

1) the radius of convergence of Gy (1) according to Cauchy (P.") and D’ Alembert
(P,/P,_,) criteria;

2) the approach to the Carleman condition 37 _,F,!/*"=c at high energies
(N—);

3) location of zeros of G (z) [Egs. (17) or (23)] and their density;

4) the order of the singularity of G(z) and its residue, (18);

5) the order of the integer function, (19);

6) the behavior of the “pressure” p(z), (21);

7) the behavior of the “multiplicity” (r(z)), (22);

8) the higher derivatives of ® , (the fractional derivatives can also be used,”’
especially in connection with the classification of the phase transitions of nonin-
teger order proposed recently?!).

The extrapolations to Y — should be attempted. It is possible that zero locations will
differ for different classes of processes (diffractive and nondiffractive; two and three jets,
etc.). The drastic change in the behavior of @, or its derivatives must be carefully
analyzed to determine a possible presence of a signature of the phase transition. Its
theoretical criteria in finite systems should be developed in parallel. We hope that the first
stage of the program formulated above can provide some new insights into the physics of
multiparticle production. More detailed results will be published elsewhere.

I am indebted to E. DeWolf for pointing out the problem to me, for Refs. 14 and 15,
and for sending the unpublished paper.'® The discussions with R. Hwa are acknowledged.
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