Electron energy transport in a weakly collisional plasma
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It is shown analytically that the energy flux is not collinear with the temperature
gradient during the heating of a low-density plasma, because of inverse
bremsstrahlung. The analysis is carried out by dividing the electrons into groups
of thermal collisionless electrons, which determine the energy transfer, and

cold (subthermal) collisional electrons, which determine the increase in the

effective temperature. © 1994 American Institute of Physics.

Research in laser controlled fusion has revealed several paradoxical properties of
heat transfer in a weakly collisional, fully ionized plasma when the electron mean free
path /, is much longer than the length scale of the spatial variations, L. One of these
paradoxical properties is a limitation on electron heat transfer (see, for example, a
reviewl). We showed in Ref. 2 that this experimental requirement, which is paradoxical
from the standpoint of the kinetic theory of ordinary gases, stems from the Coulomb
interaction between plasma particles. In the plasma there are always particles with low
velocities v <v(L/I,)"*, for which collisions are a governing factor, despite satisfac-
tion of the condition for a collisionless nature of the thermal electrons: L <kI,. Here
v=(kgTo/m )2, 1, =v5/vi, vei=4(2m) Pe?ein;A(3m?v3) ™", e is the charge of
an electron, e;=Z|e| is the charge of an ion, n; is the ion number density, and A is the
Coulomb logarithm.

In the present letter we show that the same factor leads to the result that the electron
energy flux density (a vector) is not exclusively collinear with the temperature gradient.
We should stress that numerical simulations of heat transfer have previously yielded
indications that the energy flux is not collinear with the temperature gradient.2 Those
indications did not attract the attention they deserved. Below we discuss the reason for
this property, and we offer an analytic description of it.

In the standard formulation for laser controlled fusion, we assume that the plasma is
heated by virtue of inverse bremsstrahlung of electromagnetic radiation, whose electric
field is &(r,t)=1/2E(r,t)exp(—iwgf)+c.c. The frequency of this radiation is high:
wo>v,; and wy>(vy. /L), where L is the length scale of the spatial variation in the
field of the electromagnetic radiation. Dividing the electron distribution function into a
high-frequency component and a steady-state component f, (Ref. 4), we can then use
fo to determine both the energy flux and the temperature increment. In accordance with
Ref. 5, we assume that f; differs only slightly from a Maxwellian distribution f,, :

v? edg . 5
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foW=f M{ 1+
where d¢ is the electrostatic potential, and
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Here Of, satisfies the equation’
ik'V(SfC le,[‘sfc] I [6fc]:Y0+Ya’ (3)

where IZ; and I} are collision integrals, and
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In writing Eq. (3) we assumed that / and J;; have a coordinate dependence
exp(ik-r). By virtue of the linearity of Eq. (3), we can thus formulate several general
results.

In discussing corollaries of Eq. (3) we consider velocities that are not small, and for
which the inequality v>v,=v(kl,)”V* holds. Under this condition, we can assume
that the particles with such velocities are collisionless. By virtue of the condition
kl,>1, such electrons can be called “thermal.” For them we find from (3)

Of . 7(V)=—i(Yy+Y, )( P +imwd(k- v)) (6)

where P means the Cauchy principal value. Equation (6) can be used to determine the
contribution of thermal electrons to the electron energy flux; we write it as a sum of two
terms:

qr=f dvxsmuvéf. 1(V)=qp+4q,. ™
The “potential” part of the energy flux in this case is
ik ’E|’n, ®)
D=2 2m,w; Vei

In calculating (8) we ignored small quantities on the order of (ki,) ' . At this particular
accuracy level, the divergence of expression (8) in the steady state agrees with the power
of electromagnetic radiation absorbed by electrons through inverse bremsstrahlung.® The
second term, the “solenoidal” term in Eq. (7), is unimportant for this balance. It is on the
same order of magnitude as (8) and has the following form:

E(E*-k) E*(E-'k) KE k] )en,v,
=—i + - .
L 2 E amal ©)

This expression is nonzero if the electric vector of the heating electromagnetic radiation
has both a component parallel to the vector k and components perpendicular to it. We
need to stress that the energy flux in (7) results from ballistic transport. Since the tem-
perature is a scalar, its gradient is parallel to k. Expression (9) is accordingly the part of
the electron energy flux which is perpendicular to the temperature gradient.
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Below we discuss the case in which the temperature increment is related to the
subthermal collisional electrons [v<v,=v+.(kl,) ~*#], for which we have, according to
Ref. 5,

B ik-v 1
of (v)=6f, 1_7(12) +mya, (10)

where v(v)=3(7/8)"v,,(v1./v)>. For the discussion below it is sufficient to use the
expression

9] T N8/7
8fo== 2 )T (DD sinz: gz K367, an

where K, is the modified Bessel function, N=72(4/9)Zk*[>, ¢=N?*"(v*/2v%,) and
we are assuming Z> 1.

According to Egs. (10) and (11), the increment in the thermal energy of the subther-
mal cold electrons is

1.732°"7

5T€:T€1—(W'

(12)

This quantity is substantially greater than the increment in the thermal energy of the
collisionless electrons,’ 6T, ~T J(kl1,)~1. At the same time, under the condition

24>kl >1 (13)

expression (12) is greater than the electron oscillation energy in the field of the electro-
magnetic radiation, so we can say that there is an actual heating of the subthermal
electrons.

The cold, collisional electrons make a relatively small contribution to the electron
energy flux.” At the same time, under the condition k/,>Z??, Eqs. (10) and (11) lead to
the following expression for the energy flux density transported by collisional electrons:

0'16KSH 0‘16KSH dl" (93Te(r/)
e 322, O (. l'): 2 7 7
k*lz 4wliiZ ) |r=r'|  or

q.(k)=ikéT (14)
Here kguy=(128/3m)n v1.xpl, is the thermal conductivity of the strongly collisional,
fully ionized plasma. A distinctive feature of the energy flux in (14) is that its direction is
opposite that which would correspond to ordinary Fick’s law for the heat flux. At the
same time, expression (14) differs only slightly from the collisionless flux in (8). Expres-
sion (14) was derived by expressing I in terms of 8T, in accordance with (12). If we also
express I in terms of 6T, in Eq. (8), we find’ the usual effective nonlocal thermal
conductivity of a weakly collisional plasma. In the 1D case, that expression leads to the
coefficient describing the limitation on heat transfer. In contrast, if the “solenoidal” part
of the energy flux in (9) can be written formally in terms of the gradient 67, , then the
expression preserves the vector dependence on the vector E. From the discussion above
we can conclude that the deviation from a collinear arrangement of the electron energy
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flux and the temperature gradient which has been seen in previous numerical calculations
finds an explanation on the basis of ideas of the analytic theory of weakly collisional
plasmas.

This study was carried out within the framework of a project of the Russian Fund for
Fundamental Research (94-02-03631).
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