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Relativistic corrections must be made in a description of the elastic scattering of
low-energy electrons by neon, argon, krypton, and xenon atoms. The

interaction of an electron with an atom has been modeled by several spherically
symmetric potentials. Numerical calculations have been carried out by the
phase-function method and also through direct integration of the radial relativistic
Dirac equation and the nonrelativistic Schrodinger equation. At energies
below 1 eV, the difference between the values of the total cross section for the
relativistic and nonrelativistic cases increases with increasing atomic number Z.

© 1994 American Institute of Physics.

The cross section for elastic low-energy scattering of an electron by an argon atom
was first calculated by Holtsmark' through a solution of the radial Schrodinger equation
in a Hartree potential along with polarization forces. Nonrelativistic calculations of the
total cross section for the elastic scattering of an electron by inert-gas atoms with various
polarization and exchange potentials were carried out in Refs. 2-5. In 1991, Saha
reported® the results of calculations in which the scattered electron was incorporated at
the outset in a multiconfiguration nonrelativistic Hartree—Fock method. Experimental
values were found for the total and partial cross sections for the elastic scattering of an
electron by argon in Refs. 7-12.

In the present letter we use the phase-function method'*!* to solve the radial rela-

tivistic Dirac equation and the nonrelativistic Schrodinger equation for elastic scattering
by a spherically symmetric potential V(r) which falls off more rapidly than r ! at
infinity. In an effort to test the results found by the phase-function method, we also
carried out a direct integration of the radial Dirac and Schrodinger equations and then
joined the results with the asymptotic solutions.

The normalized solutions of the radial Dirac equation'® for the large component
g(r) and the small one f(r) are

E+mc? .
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Here j is the total angular momentum, / is the orbital angular momentum, / ‘=2 j—1L E
is the total energy of the electron, m is its mass, # is Planck’s constant, ¢ is the velocity

779 0021-3640/94/110779-06%10.00 © 1994 American Institute of Physics 779



of light in vacuum, p= VE*/c*—m2c?/h is the wave vector, and ji(pr) and n(pr) are
spherical Bessel and Neumann functions, which were found in Ref. 16. The phase
function! & ;(r) and the amplitude function A ],(r) (Ref. 14) satisfy the system of
equations? of Ref. 13 with the boundary conditions 6;,(0)=0, A ;;(©)=1 :

d _V(r)(pr)? /E+mc~’r , ) X
ar é;r)= e E_mchCOS5j1(r)]l(Pr)—Sln5j1(r)771(P’)]

E—mc? ] ) s
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X[cosd;/(r) 7]1(Pr)— sindj(r)j(pr)]
\/ [COS i(r)jr(pr)—sind; (r)ny(pr)]

X [cosd;(r) 7y (pr) +sind;(r)jy (pr)]|. )

We now take the nonrelativistic limit in Eqs. (3) and (4). In this case we have

\/(E+mcz)/(E~mc2)—>2mc/ﬁk, VE—mc?*/(E+mc?)—0, p—k

[the nonrelativistic expression for the kinetic energy is E,=(fk)?/2m]. We find equa-
tions for the phase function and the amplitude function®’ (Ref. 14) under the boundary
conditions 6,(0)=0, A,(*)=1:

d 2m
i or)= W V(r)kr¥{[cos8;)(r)jikr)—sind;(r) mi(kr)]?}, )

d 2m
Ar)= h—zA,(r)V(r)krz{[cosﬁl(r)jl(kr) —sind(r) n,(kr)]
X [cosdy(r) n;(kr)—sind/(r)j(kr)]}. (6)

For scattering of a nonrelativistic particle by a potential with a characteristic depth
on the order of mc?, it is necessary to incorporate relativistic corrections. Accordingly,
we cannot ignore the second term in Eq. (3) and simply go over to Eq. (5).

Let us apply these equations to the problem of the scattering of a low-energy elec-
tron by an inert-gas atom. We adopt a scattering potential

V(r)=Va(r)+ Vp(r)+Ve(r), v

where V,(r) is the potential of the unperturbed atom, which is the sum of the Coulomb
potential of the interaction of the nucleus with a uniform charge distribution and the
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FIG. 1. Total scattering cross section
o, in atomic units, versus the Kinetic en-
ergy of the electron, £, in eV, for Ar.
Solid curve—Results of a relativistic
calculation; dashed curve—results of
Ref. 6; points—experimental. O) Ref. 7;
A) Ref. 8; [0) Ref. 9.

potential of an interaction with the electron density p(r), found in the Hartree—Fock—
Slater model of a unified atomic field in the relativistic approximation, V,(r) is the
polarization potential, and V_(r) is the exchange potential.

To determine the effect of the models used for the polarization and exchange poten-
tials on the value found for the total cross section for elastic scattering of an electron by
an argon atom, we catried out three series of numerical calculations with the following
polarization potentials V,(r) and exchange potentials®) V. (r):

(1) with the polarization potential of Ref. 2 and the exchange potential of Ref. 18;
{2) with the polarization potential of Ref. 19 and the exchange potential of Ref. 18;
(3) with the polarization potential of Ref. 2 and the exchange potential of Ref. 20.

Figure 1 shows relativistic results®’ for the first model potentials, in comparison with
calculations by Saha® and experimental data of Refs. 7-9. The cross section for the
elastic scattering of an electron with a kinetic energy E,=10"% eV is o,,=51 when
relativistic corrections are taken into account (these are atomic units), while it is
O = 44 when these corrections are ignored. This difference is determined by the fairly
deep potential of the unperturbed atom, V,(r), in which the characteristic momentum of
the electron is relativistic, as was verified by an additional series of calculations in which
the polarization potential V() and the exchange potential V. (r) were ignored.

In a second series of calculations, in which we changed the polarization potential
V,(r), we found that the total elastic cross section changed only negligibly (by an
amount on the order of 2%) in the entire energy range. In a third series of calculations, in
which we changed the exchange potential V,(r), we found a substantial difference from
the previous results at kinetic energies E,~1 eV. At E,=10"% eV we found
0.;= 1630, in atomic units. For kinetic energies £, above 3 eV, all three calculations of
the total cross section yield results in agreement with experimental data. In all three
versions, the cross sections for the elastic scattering of an electron at a kinetic energy
E,=10"% eV, according to the relativistic and nonrelativistic calculations, differ by about
15%. At low energies, the cross section depends strongly on the shape of the exchange
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potential. An additional series of calculations, similar to the third except that we varied
the contribution of the Riley exchange potential®® [V, (r)=nV(r) (Ref. 20), where
0<n=1], confirmed this behavior.

Relativistic effects are significant in the cross section for the elastic scattering of an
electron by an argon atom at low kinetic energies (E, < 5 eV) for the s and p waves.
With increasing E; , the number of partial waves increases, and the relativistic effect in
the total cross section o falls off. Figure 2 shows the difference between the relativistic
and nonrelativistic partial cross sections for the s wave. Figure 3 shows the difference
between the sum of the relativistic partial cross sections py, and p3, and the nonrelativ-
istic partial cross section for the p wave for the case of the polarization potential
V,(r) from Ref. 2 and the exchange potential V(r) from Ref. 18.

The difference between the results for the s-wave scattering phase shifts in the
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relativistic and nonrelativistic methods, ignoring spin—orbit forces, shows that the differ-
ence between the total elastic cross sections found by these methods apparently cannot be
explained by the spin-orbit coupling.

The use of the relativistic and nonrelativistic phase-function methods makes it pos-
sible to determine the particular distances at which relativistic effects come into play. For
a fairly deep potential V(r) we are no longer justified in discarding the second term from
Eq. (3) in taking the nonrelativistic limit, since this term contributes to the value of the
phase function 6,,(r) when the equation is integrated. This conclusion is supported by a
direct numerical integration of Eq. (3) with and without the second term.®’ By studying
the s-wave (/=0) phase function as a function of the distance from the center of the
nucleus of the argon atom for an electron kinetic energy £,=10"" eV, we found that the
relativistic corrections begin to increase at distances r on the order of 2 a.u.

The difference between the relativistic and nonrelativistic results of calculations of
the cross section for the elastic scattering of an electron by an atom stems from the depth
of the unperturbed atomic potential V() , which in turn depends on the atomic number
Z. We carried out calculations of the total cross section for the elastic scattering of an
electron by atoms of the inert gases neon (Z=10), argon (Z = 18), krypton (Z=236), and
xenon (Z = 54)[ with the polarization potential V,(r) from Ref. 2 and the exchange po-
tential V,,(r) from Ref. 18].

The results'” show that, at low electron kinetic energies, the difference between the
relativistic and nonrelativistic calculations increases substantially with increasing atomic
number Z: At the energy £,=1078 eV for the Ar atom, the relativistic cross section
differs from the nonrelativistic one by 15%, and it differs from that of the heaviest atom,
Xe, by 192%.

The accuracy of the experimental data currently available is such that even simple
model potentials seem to be in good agreement with experiment. The most systematic
theoretical nonrelativistic calculations® by the multiconfiguration Hartree—Fock method,
incorporating an electron in the continuum, require immensely powerful computer sys-
tems such as the CRAYs. Our study has shown that relativistic corrections influence the
values of the phase shifts and cross sections for elastic scattering. The method which we
have used to solve the radial Dirac equation by the phase-function method can also be
applied to other problems in which one needs to find only the scattering phase shift, not
the wave function.

We wish to thank V. Yu. Dobretsov for furnishing programs of great assistance in the
numerical calculations. We also thank A. L. Barabanov for a discussion of this study. This
study was supported financially in part by a grant from the Kurchatov Institute Russian
Science Center.

"Here 8;(=)= &, is the phase shift of the elastic scattering.

YSee Ref. 17 for a detailed derivation.

3The phase function 8,(r) and the amplitude function A,(r) of the Schrédinger equation depend on only the
orbital angular momentum /; at nonrelativistic energies we have 8,=8,,1,,~8,_1,, p=~k.

“The parameters of the potentials and their exact shapes can be found in Ref. 17.

S'The nonrelativistic results are not shown here, because of the small scale of this figure.
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9This approach is equivalent to a numerical integration of Eq. (5) for the nonrelativistic polarization method.
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