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The distribution of eigenfunction amplitudes and the variance of the “inverse
participation ratio” (IPR) in disordered metallic samples have been
calculated. The weak-localization corrections to the predictions of the random
matrix theory are found. © 1994 American Institute of Physics.

The statistical properties of disordered metals have attracted a considerable research
interest in recent years. It was understood that the old problem of a quantum particle
moving in a quenched random potential, considered earlier in the context of the Anderson
localization and mesoscopic phenomena,' exemplifies a particular class of chaotic quan-
tum systems and has much in common with such paradigmatic problems in the domain of
quantum chaos as quantum billiards.”? The Wigner—Dyson energy level statistics, first
found in the framework of random matrix theory (RMT)* and considered to be a “fin-
gerprint” of quantum chaotic systems,* was also shown to be relevant for disordered
metals.>® This fact gave rise to a broad application of RMT results for qualitative and
quantitative descriptions of mesoscopic conductors and stimulated a common interest in
statistical characteristics of spectra of disordered systems.’

At the same time, less attention was given to statistical properties of eigenfunctions
in disordered or chaotic quantum systems. Recently, however, the distribution of eigen-
function amplitudes was shown to be relevant for description of fluctuations of tunneling
conductance across the “quantum dots,”® as well as for the understanding of some
properties of atomic spectra.” In addition, a so-called “microwave-cavity” technique has
emerged'” as a laboratory tool to simulate a disordered quantum system. This technique,
which allows us to observe directly the eigenfunction spatial fluctuations, was used in
Ref. 11 to study experimentally the eigenfunction statistics in weak-localization regime.
All these facts make us focus special attention on the eigenfunction statistics, which must
be studied in detail theoretically.

In order to characterize eigenfunction statistics quantitatively, it is convenient to
introduce a set of moments /= f|y(r)|*%d”r of eigenfunction local intensity'* |(r)|*. The
second moment I, is known as the inverse participation ratio (IPR). This quantity is a
useful measure of the eigenfunction localization: it is inversely proportional to the vol-
ume of a part of the system which contributes effectively to the eigenstate normalization.
For completely “ergodic” eigenfunctions which cover randomly, but uniformly, the
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whole sample I,%1/V, where V is the volume of the system. If, in contrast, the eigen-
functions are localized, i.e., concentrated in the region of linear size & the mean IPR
scales are IEM{D 2, where D, is an effective dimension which can be different from a
spatial dimensionality d because of the multifractal structure of eigenfunctions.'? Corre-
spondingly, the IPR fluctuations reflect lev el-fo-lev el variations of the spatial structure of
the eigenfunction.

The most complete analytical study of statistical characteristics of eigenfunctions
was performed for the cases of 0d systems'*!'* and for strictly 1D (Ref. 15) and quasi-1D
(Refs. 16 and 17) geometry. Some analytical results were obtained also for a system in
the vicinity of the localization transition in the dimensionality d=2+¢, e<<1 (Ref. 12) and
for d—o (Ref. 18). Let us note that in Refs. 13, 14, and 1618 the supersymmetry
method was used. This is a very powerful tool for studying distribution functions of
various quantities which characterize the eigenfunction statistics.

In the present letter we address systematically the issue of the eigenfunction statis-
tics for arbitrary spatial dimensionality d in the weak localization domain. In the leading
approximation (which ignores spatial structure of the system and treats it as a zero-
dimensional system) these statistics are described by the RMT which predicts a Gaussian
distribution of the eigenfunction amplitudes'>'” y{r). We know since the publication of a
paper by Altshuler and Shklovskii® that the diffusion motion of a particle in a metallic
sample produces deviations of spectral statistics from what can be expected in RMT. To
the best of our knowledge, the analogous problem for the eigenfunction statistics in 2D
and 3D systems has never been studied. It is considered only in this paper. We use a
recently developed method,!® which is based on the supersymmetry methods®*” and
which combines a perturbative elimination of fast diffusive modes (in the spirit of the
renormalization group ideas) and a consequent nonperturbative evaluation of the resulting
0d integral. We can thus calculate the deviations from the Gaussian distribution of yAr)
in mesoscopic metallic samples. We can also calculate the variance of the IPR, which
turns out to be on the order of l/gz, where g is the dimensionless (measured in units of
e?/h) conductance of the sample.

In order to calculate the distribution of the eigenfunction amplitude and to find the
IPR variance, we use the fact that relevant quantities can be expressed in terms of the
correlation functions of a certain supermatrix o-model.>** A quite general exposition of
the method, which is not repeated here, can be found in Ref. 21. Depending on whether
the time reversal and spin rotation symmetries are broken, one of three different
o-models is relevant, with the orthogonal, unitary, or symplectic symmetry group. We
consider mostly the case of the unitary symmetry throughout this paper. For two other
cases the calculations are similar, and only the results are presented.

The expressions for I_q and 172 (the bar stands for disorder averaging) in terms of the
o-model read as follows:

f==ltim e 2 JD
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where
FD(u,Q)= J dr{eStr(AQ)+uStY(QAk)},

O=T"'AT, A=diag(1,1, -1, —1),

1
k=diag(1, —1, 1, —1), ?=7rv_@/4. (3)

Here T is a 4X4 supermatrix which belongs to the coset space U(1,1[2), & is the classical
diffusion constant, v is the density of states, and V is the volume of the system.

In general, the RMT predictions are applicable to a disordered metallic system under
the following conditions: L>1; E_3A, where L is the size of the system, / is the mean
free path, E.=h</L? is the Thouless energy, and A is the mean level spacing. The
eigenfunctions for such systems are known to be ergodic, where the amplitudes ¢{r) are
uncorrelated (for |[r—r'|=1) Gaussian-distributed complex (real) variables for a broken
(unbroken) time-reversal symmetry, respectively. This immediately gives! 714
1$9=q!/vi~" and IZ = I,%, where the superscript u refers to the unitary symmetry.

In the framework of the o~-model formalism these results can be easily reproduced if
any spatial variation of the supermatrix field Q(r) is ignored. Equations (1) and (2) will
then reduce to integrals over a single supermatrix which can be evaluated exactly. The
corrections to the RMT results have the form of a regular expansion in a small parameter
A/E,=g~!'. A systematic method of constructing such an expansion can be briefly out-
lined as follows."” The matrix Q(r) is decomposed as Q(r) = To~ ' — 1 — 1
—1-1-1-10(r)T,, where T, is a spatially uniform matrix, and Q describes all
modes with nonzero momenta. When A<E , the matrix Q fluctuates only weakly around
the value Q=A. Thus, it can be expanded as Q=A(1+W+ w2/2+...), where W is a
block, off-diagonal supermatrix which represents independent fluctuating degrees of free-
dom. Substituting this expansion into Egs. (1)—(3) and integrating out the “fast” modes,
we obtain an expression for the renormalized functional . e‘&)(u,QO), where
Qo=T;'AT,is an r-independent matrix (zero mode). The contribution of the eliminated
“fast” modes is expressed in terms of the diffusion propagator P(r,r,). For an isolated
sample this propagator has the form

P(ry,ry)=2, cos(gry)cos(gra)P(q),
q

P )=_1___1.__ = n_l fﬁ (4)
9 27TVV _(Zq2+6 ’ 9 LI T Ld ’

n=0,%1,%+2,..., > n?>0,
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where the system is thought to be of the size L, XL, X...XL,. Finally, the integrals over
Q, are performed exactly.

Applying this method to Egs. (1) and (3), we obtain

R 1+a—lq(q——1)+0( ! )} (5)
2R R g’

where g=2mvZL“"? is the conductance of the sample. The value of the coefficient
a,=gZ,P(q) depends on the spatial dimension. This value is a,=1/6 in quasi-1D
systems. For d=2 the corresponding sum over the momenta g diverges at large |g| and is
the cutoff at |g|~!"'. This gives a;=(1/2m)InL/! for d=2 and a;xL/I for d=3.

Knowing all the moments If]“), it is an easy task to restore the whole probability
distribution AAy) of the eigenfunction local intensity y = V{y(r)|*:

A(y)=e™ : ©)

1+ —ay+ 2)+0(1)
P yTy g2

The corresponding equations for systems with unbroken time reversal symmetry
(orthogonal and symplectic o~-model) are as follows:?2

—y/2

-’/’(0)0’):%;;

./ixp)(y)=4ye_2y
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+
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1
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14236y +2y7)+0

22| 8)

The leading terms here reproduce the well-known Porter—Thomas distribution,
which is the RMT result.> The rest is the weak-localization correction. In the quasi-1D
sample these expressions coincide with that obtained in Ref. 17 if the scaling parameter
introduced in Ref. 17 is identified as x=g . Equations (6), (7), and (8) are valid up to
y=+vg/a;. For larger values of y (i.e., in the far “tail”) the distribution function 74t)
differs strongly from that of the random matrix theory and cannot be found by the method
used here.

The distribution of the eigenfunction amplitude, .71 ¢t), was recently studied experi-
mentally in a microwave cavity with a disorder.! The reported results are in good agree-
ment with Eq. (7) which was obtained by us.

Let us now consider the IPR fluctuations. It turns out that IPR variance is on the
order of 1/g°. Expression (5) is therefore insufficient for our needs and should be ex-
tended to the next order. Using the same method, we find

i 2[1+2a‘+1(2 25 )+0(1)
== 1+— ai—>5a -3
2 Vi g _87 1 2 g3

>

2

83

[I(zu)]z:(E 1+——+—2— - —+
4 g 8 g

4a, 8a1 2a, (1”

Here the coefficient a, is defined as a2=g22qP2(q). This coefficient is
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™ 2
ng=0; n“>0

(9)

where the sum converges for d<<4. For quasi-1D samples we have a,=1/90, and the
expressions which we found coincide with the results of Refs. 16 and 17.

Thus, we find the following expression for the relative variance of the IPR distribu-
tion:
L P-(5F 8ay (1
sW(1)=2 =2 =2 ol ). (10)
[[(2u)]2 g g
This result demonstrates that for a metallic sample the distribution function of IPR AT,)
has the form of a narrow peak with a typical width on the order of 8MugTl<l. As g— o,
Al ,)—81,—1,), a result which we expect from RMT. For the orthogonal and symplec-
tic symmetry cases we find 89(I,)=32a,/g* and 8°P)(1,)="2a,/g>, respectively.

In summary, we have studied deviations of the eigenfunction statistical characteris-
tics in a disordered metallic sample from those predicted in the random matrix theory.
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