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A domain wall of small area in an antiferromagnet is a good setting for observing
a macroscopic quantum tunneling of magnetization. © 1994 American
Institute of Physics.

Macroscopic quantum tunneling in magnetic materials has recently attracted consid-
erable interest, both theoretical and experimental (see a review'). Macroscopic quantum
tunneling in magnetic materials corresponds to below-barrier transport between macro-
scopic equilibrium states of the magnetization distribution. This phenomenon has been
studied theoretically for mesoscopic systems—ferromagnetic> and antiferromagnetic?
particles of ultrasmall size (~50-100 A)—and also for the depinning of domain walls.*
Effects of macroscopic quantum tunneling are manifested in a finite magnetic relaxation
as T—0 (see the bibliography in Ref. 1) and also in the onset of a resonance involving
levels split by tunneling in ultrasmall particles® (see also the discussion in Ref. 6).

1. In this letter we suggest a new effect of macroscopic quantum tunneling: a below-
barrier quantum change in the polarity of a small-area domain wall. We consider a wall
in a thin magnetic film which is a narrow strip or “hourglass,” with the wall localized at
the neck. (Yet another possibility arises from the use of 2D magnetic materials such as
films of manganese stearate.”) We assume that the magnetic material is orthorhombic
with an anisotropy energy

w,=Kin,+Kon?, K,>K, (1)

where n is a unit vector (the normalized magnetization in the case of a ferromagnet; the
antiferromagnetism vector in the case of an antiferromagnet), K, and K, are anisotropy
constants, XY is the easy plane, and Y is the easy axis in that plane. In terms of the angle
variables n, = cos#f, n,+in,=sinfexpie, a wall corresponds to the solution

cos@=tanh(x/A), ¢=¢yu=const, (2)

where A=Ay=(A/K,)"?, A is the inhomogeneous-exchange constant, and we have
©o=0, 7 for a suitable wall [here we are using (1)]. The wall can thus be in two states,
which differ in the direction of n at the center of the wall (at x=0) : n(0)= + e, and n(0)
= —e, (Fig. 1). The energies of these states are the same, S,a, where Sy, is the area of the
wall, and 0=4(AK;)!"? is the energy of the wall per unit area.® These states are sepa-
rated by a finite barrier Uy=4SAq[(K,K;)"*— K], so a tunneling can occur between
them. In either a ferromagnet or an antiferromagnet with a Dzyaloshinskii interaction,
polarization reversal of the wall is accompanied by a change in the projection of the
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FIG. 1. Distribution (shown schematically) of bfn in a domain wall in the course of polarization reversal. The
labels 7=~ and r=+o correspond to equilibrium states: an initial state with n(0)=—e, and a final state
with n(0)= +e,. The value =0 corresponds to the state n(0)= +e,, with the maximum energy. It is easy to
see that, in the x, 7 plane, the process corresponds to a vortex configuration in which the vector n rotates through
27 as a closed loop around the point x=0, 7=0 is traversed.

magnetic moment of the wall onto an axis [the X axis for a ferromagnet; the (e, < d) axis
for an antiferromagnet (see the discussion below)] by an amount AM =MS,A,, where
M is the magnetization per unit volume. From the standpoint of the “classical” param-
eters AM and U, the wall thus behaves as a small particle with a volume Soly.

We have analyzed the tunneling probability in a wall for the cases of ferromagnets
and antiferromagnets. For ferromagnets, this probability turns out to be the same as for a
small particle of volume SoA,, ie., for a particle which has one linear dimension pro-
portional to the macroscopic quantity Ag~(10%-10%)a, where a is the constant of the
magnetic lattice. However, the case of an antiferromagnet, discussed below, is of consid-
erably more interest. We will show that in this case the probability for polarization
reversal does not depend on the wal} thickness, and that it is determined exclusively by
the wall area S,,.

2. We describe the dynamics of the antiferromagnet on the basis of an effective
Lagrangian for a unit antiferromagnetism vector® I:

L= f CHAL(1/P) (o) = (VXD ~ K, 2 - K, 12}, 3

where c is the limiting velocity of spin waves. The magnetization of the antiferromagnet,
M, is determined by the Dzyaloshinski i field d: M = xo(dX1), where y, is the
susceptibility of the antiferromagnet. On the basis of (3) we can describe a “rocking”
mode localized at a wall. In the linear approximation, that mode corresponds to

P= ot Yocosort, w=wop, p=K,/K,~1, @
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where the quantity wg=c/A, is the same as the activation energy for the lower branch of
spin waves of the antiferromagnet. Excitation of this mode has been observed in
orthoferrites.’

1t is fairly clear that this localized mode is responsible for the tunneling. Assuming
that the area of the wall is small, we restrict the discussion to an analysis of 1D field
configurations 1= I(x,¢). To analyze rocking with an amplitude which is not small, we
seek a solution in the form of (2) with ¢= ¢, (¢), A=Ay(1+ psin*p,) "> where we can
treat ¢,, as a slow variable under the condition w;<€wq (p<€1). Using (3), we then find
the effective Lagrangian for the one variable ¢, in the leading approximation in p,
w, ‘de,/dt:

L=(1/2)aSpfwy *(de,, /dt)*— psin®e,}. (5)

This Lagrangian describes a “particle on a circle” in a two-well potential. The magnitude
of the tunneling splitting can be calculated easily either by instanton methods'® or by the
WKB approximation. The tunneling matrix element is AU =(%w /2m)exp(—Sg/h),
where w, is a characteristic frequency of the classical motion, and S is the Euclidean
action calculated for the classical solution in the imaginary time 7=1it, which couples the
initial and final states. In our case, solutions of this type are instantons and antiinstantons
of the type ¢, (7)= i2arctanexp(w0\/;~r), and the magnitude of the tunneling splitting
of the levels, AE=2#AT", is given by

2 o
AE= ; wo\/—;;expl —250%8\/;] . (6)

It is a simple matter to calculate the critical temperature 7., below which effects of
macroscopic quantum tunneling outweigh thermal effects, by writing the exponential
function in (6) as exp(— U, /kT.), where U, is the barrier height. As a result, we find the
estimate k7 .~fiw \/; Dissipation effects may cause a renormalization'' of T, . In the
case of a higher symmetry (e.g., tetragonal), we would have obtained a potential with
more minima, but the picture would remain fundamentally the same.

3. Let us compare (6) with the corresponding result for macroscopic quantum tun-
neling in a small antiferromagnetic particle (for the latter case the argument of the
exponential function is KV, /hw,, where V, is the volume of the particle?). Interestingly,
the argument of the exponential function in (6) is \/;;S os/a* in order of magnitude, where
s is the spin of the magnetic atom; it is independent of both the exchange integral J and
the wall thickness A . In other words, it is proportional to the number of magnetic atoms
in the cross section of the wall, not the number in the volume of the wall. The observable
parameter AM has the behavior AM =« A, and increases with increasing wall thickness.
The temperature T, * fiw increases as V7 with increasing value of the exchange integral.
Since AM is not small, there is the hope that macroscopic quantum tunneling of a domain
wall in an antiferromagnet might be detected not only as a resonance involving split
levels (dissipative effects might be a problem here') but also through direct measurement
of the magnetization with a SQUID magnetometer.

Furthermore, in our case the argument of the exponential function is independent of
the uniaxial anisotropy constant (¢ * VK and fiwg VK ). It is proportional to \/;, where
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p determines the ratio of the anisotropy in the basal plane to the uniaxial anisotropy. For
easy-axis antiferromagnets with a principal axis C,, n=3,4,6, the quantity p is small.
For tetragonal MnF,, for example, the fields of the uniaxial and intraplane anisotropy are
30 Oe and 7.8 kQe, resp&:ctively,12 and we have p=3.8X 1073, For orthorhombic anti-
ferromagnets of the orthoferrite type, we have values p=0.1-1, but these values may
decrease substantially if a magnetic field is applied along an intermediate axis. In this
case we would have p—0as H—H_, x lH3=K2 — K, . In the limit p—0, however, there
is a decrease in the pre-exponential factor and in the value of T.

4. Let us carry out an estimate for a typical antiferromagnet. For definiteness we
select MnF,, with x,=1.6X10"% o=0.5 erg/em®, Hg=93 kOe, and
wy=1.6X10'% 57!, i.e. hewy/k=12 K. For these values, the argument of the exponen-
tial function is written in the form Sop(6 X 10'* cm~2). Assuming that a macroscopic
quantum tunneling is plausible if the argument of the exponential function does not
exceed! 20-30, even with p=0.1 we find \/S_Os4 X10~7 cm and T,=4 K. These figures
are no worse than for macroscopic quantum tunneling in small antiferromagnetic par-
ticles. If we instead use p=4x10"3, we find \/S_OS 107 cm with T,=0.8 K. These
results look realistic for an experimental observation of the effect.
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