Nonlinear effects in the nonlocal resistance of a 2D
electron gas under conditions of the quantum Hall effect

M. V. Budantsev, G. M. Gusev, Z. D. Kvon, and A. G. Pogosov

Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences,
630090 Novosibirsk, Russia

(Submitted 10 December 1993; resubmitted 26 October 1994)
Pis’ma Zh. Eksp. Teor. Fiz. 60, No. 12, 834-838 (25 December 1994)

The nonlocal resistance of a 2D electron gas has been studied under conditions
of the quantum Hall effect in the nonlinear regime. A breakdown of the

quantum Hall effect has been observed in a nonlocal geometry. Nonlinear features
have been observed in the behavior of the nonlocal resistance in the

dissipative regime. The results found are interpreted on the basis of a model of
edge current states for which the length scale for mixing with bulk states

is determined by the magnitude and direction of the current through the
sample. © 1994 American Institute of Physics.

The model of edge current states proposed by Bittiker! in 1988 has been used
successfully to describe the mechanisms for current flow in 2D systems under the con-
ditions of the quantum Hall effect. The role of edge current states is seen particularly
clearly in an analysis of nonlocal effects (Ref. 2, for example). Recent studies have
shown that this model is also valid in the case in which the Landau level in the interior
of the sample is at the Fermi level, i.e., when the current is transported not only by edge
states but also by the interior of the sample (this is the dissipative regime).> Unambiguous
evidence for this conclusion comes from experimental observations of nonlocal effects in
the dissipative regime.’>~> Several experimental studies of nonlinear effects associated
with breakdown of the quantum-Hall-effect regime by the current which is flowing have
attempted to extend the applicability of the Buttiker model to this case.*”® However,
those studies were restricted to the local resistance; nonlinear effects in the nonlocal
resistance have gone unstudied, as has the role played by edge current states in the regime
of breakdown of the nonlocal resistance.

In this letter we are reporting an experimental study of nonlinear effects in both the
local and nonlocal resistance in the quantum-Hall-effect regime. We discuss both the
dissipative and nondissipative cases. The results are interpreted in a model of edge cur-
rent states.

The test samples were fabricated on the basis of an 2D electron gas in a GaAs/
AlGaAs heterostructure [N, =4.8X 10'! cm™2, u=400 000 cm?*/(V-s)]. The topology of
the test samples is shown in the inset in Fig. 1. In the experiments we studied the
resistance of the samples as a function of the direct current in various magnetic fields up
to 7 T at T=1.3 K. We measured the differential resistance R;;;;=dV,/dl;; of the test
sample in various circuits by passing a direct current I;; modulated by an alternating
component I;; (I;;=1I;;+1;;) through contacts i and j. A lock-in detector measured the
voltage (V,;) between contacts k and [ at the frequency of the alternating current
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FIG. 1. The local resistance R 43 (solid curve) and the nonlocal resistance R |43 {the dashed curve) versus the
magnetic field. The local resistance R 4,3 did not change when the magnetic field was reversed. The inset shows
a schematic diagram of the test sample and of the edge currents corresponding to the positive direction of the
magnetic field, as indicated here.

(f=70 Hz) as a function of the direct component of the current, I, ;- The amplitude of the
alternating current /;; was 0.02 uA. The features observed in the differential resistance
corresponded to direct currents in the interval 2—60 uA in different cases, so the condi-
tion A1~,«j<<i,-j was satisfied.

Figure 1 shows the resistance of the sample as a function of the magnetic field in a
local circuit (R 453) and in a nonlocal circuit (R5,3) (the positive sign of the magnetic
field corresponds to the direction shown in the inset in Fig. 1). The local resistance in
high magnetic fields represents Shubnikov—de Haas oscillations. The vanishing of this
resistance at B=~35 T corresponds to a filling factor v=4. The local resistance does not
change when the magnetic field is reversed. It can be seen from Fig. 1 that the nonlocal
resistance of the sample is zero in weak magnetic fields, up to 2 T, and also at integer
values of the filling factor. Maxima of the nonlocal resistance correspond to half-integer
values of the filling factor, i.e., to the dissipative regime of the quantum Hall effect. It can
also be seen from this figure that the nonlocal resistance is very asymmetric with respect
to the B=0 axis. The reason is that the geometry of the sample is not symmetric. Below
we discuss separately the results found in our study of the nonlinear effects in the
nondissipative and dissipative cases.

NONDISSIPATIVE REGIME (v=4)

The behavior of the local and nonlocal resistances as a function of the direct current
is of the nature of a breakdown in the nondissipative regime (Fig. 2). This breakdown in
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FIG. 2. Breakdown characteristics of the local resistance R },5 and of the nonlocal resistance R 1243 and R 55 for
positive and negative directions, respectively, of the magnetic ficld.

seen as a sharp increase in the resistance, from zero to 1-4 k() upon the attainment of the
critical current /.. The current of the local-resistance breakdown is 1.8 MA and is inde-
pendent of the direction of the magnetic field and that of the current. A similar behavior
is seen at B= 3.3 T, which corresponds to »=6. It can be seen from Fig. 2 that the current
of the nonlocal-resistance breakdown is also independent of the direction of the current,
but it changes dramatically when the magnetic field is reversed, from 11 wA for the
positive direction of the magnetic field to 54 A for the negative direction. These values
are considerably higher than the current of the local-resistance breakdown.

We believe that the behavior described here can be explained by the model of edge
current states. According to that model, the breakdown of the quantum Hall effect results
from a backscattering of edge states stimulated by the current.’ As the current is raised,
the region of the local arm (between contacts 1 and 2) breaks down first. Breakdown of
the nonlocal resistance R,4; occurs at much higher currents (Fig. 2). A necessary con-
dition for this breakdown to occur is that the edge current connecting contacts 3 and 4
exchange electrons with the interior of the sample. The latter process can occur if, with
increasing current, the breakdown region propagates across the bridge and comes suffi-
ciently close to this edge state. We believe that this process actually occurs and that the
reason it does is that the edge current state which enters the bridge has an electrochemical
potential u, which is not equal to the bulk value g, . Although the difference
[me— py| is small, it increases upon a large increase in the current, and it leads to a
propagation of the dissipative breakdown region across the bridge into the nonlocal arm.
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FIG. 3. a: Experimental results on the nonlocal resistance versus the current for the cases of a positive direction
of the magnetic field, R, (solid curve), and a negative direction, Ry, (dashed curve). b: Results of a
numerical calculation of R{,,; and R 5,; as a function of the current. Also shown here is the geometry of an
H-shaped sample which is topologically equivalent to the experimental samples, with a schematic diagram of
the cdge currents.

The reason for the difference between breakdown currents for the nonlocal resis-
tance for the different directions of the magnetic field is the asymmetry of the sample. In
the case of a positive magnetic field, an edge current state coming from contact 2 reaches
the bridge; in the case of a negative ficld, the state comes from contact 1. For the edge
state from contact 2, the exchange of electrons with the interior is more intense than that
for the edge state from contact 1, since it occurs through a narrower region with a
stronger Hall field. Consequently, the difference between the electrochemical potential of
the edge current state which reaches the bridge and that of the interior near the bridge is
significantly smaller for a positive magnetic field than for a negative one. Since the
nonlocal resistance is determined by this difference in electrochemical potentials, the
critical breakdown current is much higher for the positive direction of the magnetic field
than for the negative direction.

DISSIPATIVE REGIME (r~4.5)

At magnetic fields B=5.95 and ~5.95 T, which correspond to maxima of the non-
local resistance, we measured the nonlocal resistance as a function of the direct current.
The curves are asymmetric (Fig. 3a) for both positive and negative fields. For the positive
direction of the magnetic field, the resistance has a single maximum, R;,;;=471 Q at
I=0.2 pA. For the negative direction of the magnetic field, the resistance has two
maxima, at [=—1.25 and 1.1 uA. These figures correspond to R,43=45 and 41 ,
respectively. At high currents, the resistance decreases sharply.

To analyze the results on the basis of the model of edge current states, we carried out
pumerical calculations of the nonlocal resistance of an H-shaped sample topologically
equivalent to the experimental sample (Fig. 3b). By analogy with Ref. 9 we assumed that
the conductivity of the interior of the sample is described by a tensor (o, 0, ; the value
of o, has little effect on the results, and for simplicity we set it equal to zero) and that
the e)}change of electrons between the edge current states and the interior is determined
by the distance L. We assumed that L depends on the difference between the electro-

851 JETP Lett.,, Vol. 60, No. 12, 25 Dec. 1994 Budantsev et al. 851



chemical potentials of the edge current states, u,, and of the interior, w,:
L =Lgexp(—|u.—pp+Aul/t), where Ly=100 um, t=1 meV, and Au=0.6 meV are
adjustable parameters. The parameter A leads to an asymmetric dependence of the
length L on the difference (u,— ), associated with the asymmetric configuration of the
confining potential and also the effect of the Coulomb repulsion of electrons on the edge
current states.® These effects are important at small values of the difference (.~ ).
They cause L to become asymmetric with respect to the sign of the current, i.e., to
become different at different edges of the sample. In this formulation, we were able to
solve the problem numerically at small values of the current. The results of these calcu-
lations are shown in Fig. 3b. Comparison of the calculations with experimental data (Fig.
3a) shows that all the basic features of the experimental behavior (the asymmetry in terms
of the current direction, the presence of one maximum in R 5,5, and the presence of two
maxima in R ,,3) are described well by the model used here.

In summary, the basic features of the nonlinear behavior of the nonlocal resistance
can be explained on the basis of a model of edge current states, under the assumption that
the length scale of the mixing of the edge and bulk states, L, decreases with increasing
current through the sample and furthermore depends on the sign of this current.
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