Acoustical properties of *B*-modification smectic liquid crystals in static magnetic fields

A.S. Lagunov and V. A. Balandin All-Union Extension Machine-Building Institute

(Submitted 22 March 1979)

Pis'ma Zh. Eksp. Teor. Fiz. 30, No. 1, 3-6 (5 July 1979)

The temperature dependence of ultrasound velocity is studied for different orientation angles of the magnetic field and wave vector. A change is observed in the sign of anisotropy of ultrasound velocity in comparison with the nematic phase. Measurements are used as a basis for calculations of the temperature dependence of elastic constants.

PACS numbers: 61.30.Gd, 43.35.Bf, 62.20.Dc, 43.34.Rw

Investigation of the behavior of acoustical parameters for the ultrasonic waves propagating in liquid-crystal mesophases yields information about the molecular and thermodynamic properties of a given class of media of the condensed state of matter. Smectic B phases, which represent laminar structures with a hexagonal ordering of molecules in a layer, ¹¹ have been studied less than the higher-temperature smectics A and C and a comparison of their properties with those of other mesophases, and also with solid bodies, is of interest from the standpoint of formulating a theory of the liquid-crystal state. In this work we report results of measurements of velocity of longitudinal ultrasound at the 3-MHz frequency in smectic B phases of butoxybenzylidene-butylanilene (BBBA) and butoxybenzylidene-octylanilene (BBOA). These materials have the following phase transition schemes: BBBA: crystal (Cr) $\frac{8^{\circ}C}{2}$ smectic S_3

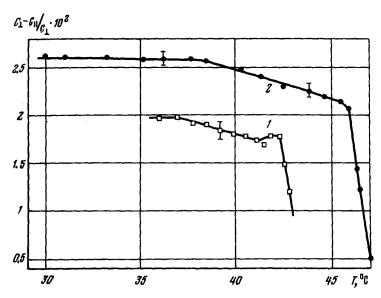


FIG. 1. Temperature dependence of ultrasound velocity anisotropy. 1—in BBBA; 2—in BBOA.

1

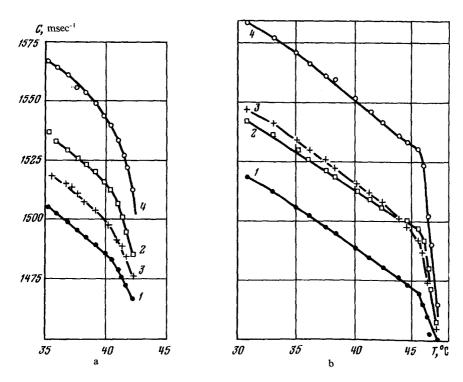


FIG. 2. Temperature dependence of ultrasound velocity anisotropy for different orientation angles θ : a—in BBBA; b—in BBOA; 1— $\theta = 30^{\circ}$; 2— $\theta = 0^{\circ}$; 3— $\theta = 60^{\circ}$; 4— $\theta = 90^{\circ}$.

35°C smectic $B(S_B)$ 42.5°C smectic $A(S_A)$ 43.5°C nematic (N) 70.9°C isotropic liquid (I); BBOA: $Cr^{29.8°C}S_B$ 47.5°C S_A 61.5°C $N^{73°C}I$. The phase classification corresponds to data in Ref. 2. Investigations were carried out in a 3-kGauss magnetic field by means of a pulsed-phase method involving a comparison of pulse fronts. (3) Errors in determining the velocity of ultrasound in a temperature range that exceeds the temperature of the phase transition $S_A - S_B$ by 2 °C was 0.15%. As is known, variation in the magnetic field orientation in the smectic phases with respect to the direction of ultrasound propagation preserves the acoustical parameters and, therefore, the anisotropy of ultrasound velocity $\Delta C/C_{\perp} = (C_{\parallel} - C_{\perp})/C_{\perp}$ was determined as the difference between the corresponding curves that were obtained during cooling from the nematic phase in a magnetic field directed parallel and normal to the wave vector. Here, $C_{\parallel,\perp}$ are the ultrasound velocities in the directions that are parallel with and normal to the magnetic field, respectively.

Figure 1 shows the temperature-dependent anisotropies $\Delta C/C_{\perp}$ in BBBA (curve 1) and BBOA (curve 2). In both materials, the absolute value of $\Delta C/C_{\perp}$ increases sharply for the phase transition S_A – S_B ; this growth becomes smoother as the temperature decreases (the temperature coefficient of velocity anisotropy decreases 10–12-fold), and, subsequently, $\Delta C/C_{\perp}$ remains constant with the temperature, its value being $\sim 2 \times 10^{-2}$ for BBBA and $\sim 2.6 \times 10^{-2}$ for BBOA. While investigating the S_B

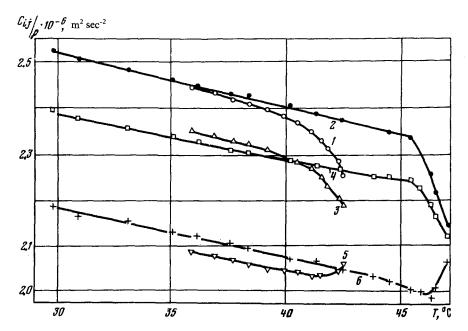


FIG. 3. Temperature dependence of elastic constants C_{11} —1,2; C_{33} —3,4; C_{13} —5,6 in BBBA (odd numbers) and BBOA (even numbers).

phases a change was observed in the sign of ultrasound velocity anisotropy with respect to the nematic phase, namely $C_1 - C_{\parallel} > 0$.

Proceeding from the symmetry of B smectics, ⁽⁴⁾ the angular dependence of ultrasound velocity $C(\theta)$ is expressed as follows:

$$2\rho C^{2}(\theta) = C_{11} \sin^{2}\theta + C_{33} \cos^{2}\theta + C_{44} + \{ [(C_{11} - C_{44})\sin^{2}\theta - (C_{33} - C_{44})\cos^{2}\theta]^{2} + 4(C_{13} + C_{44})^{2} \sin^{2}\theta \cos^{2}\theta \}^{1/2},$$

where C_{11} , C_{33} , C_{13} , C_{44} are the elastic constants and ρ is the density.

Figure 2 shows the results of measurements of ultrasound velocity for orientation angles of 0, 30, 60 and 90°. Based on these measurements, and using the foregoing relationship, we calculated the temperature dependence of the elastic constants C_{11} , C_{33} and C_{13} shown in Fig. 3. The elastic constants C_{11} and C_{33} increase with a decrease in the temperature. The C_{13} constants in both materials pass through a minimum near the phase transition $S_A - S_B$. The method used here does not permit the calculation of the shear modulus C_{44} from the angular dependence of ultrasound velocity since, in this case, error in C_{44} exceeds 100%. Based on the impedometric studies of the S_B phase in BBOA, 151 the shear modulus at frequencies below 5 MHz is below 10^7 dyn/cm². Inasmuch as the latter is three orders of magnitude smaller than the values of spatial elastic constants, the moduli reported in this paper were calculated under an assump-

tion that C_{11} , C_{33} , $C_{13} \gg C_{44}$. The sign of ultrasound velocity anisotropy obtained in this work is in contrast with the results of Ref. 4 which show that in the S_B phase of ethylmetoxy-benzylidene-aminocinnamate $C_{\parallel} - C_{1} > 0$. This difference may be associated with the use in Ref. 4 of an impure specimen of S_B -phase which, in contrast with the S_B phases of BBBA and BBOA, is naturally metastable and monotropic.

¹A.M. Levelut and M. Lambert, C.R. Acad. Sci. 272B, 1018 (1971).

²G. Smith and Z. Gardlund, J. Chem. Phys. **59**, 3214 (1973).

³V.A. Balandin and O.Ya. Shmelev, Sb. Primenenie Ul'traakustiki k issledovaniyu veshchestva (Coll. Application of Ultra-acoustics to Investigation of Matter) VZMI, M., No. 30, 1978.

⁴K. Miyano and J. Ketterson, Phys. Rev. A 12, 615 (1975).

K. Wilyano and J. Ketterson, Phys. Rev. A 12, 615 (1975)

⁵Y. Thiriet and P. Martinoty, J. Phys. Lett. 36, 125 (1975).