Inclusive production of D-mesons in e^+e^- annihilation

V.G. Kartvelishvili, 1) A. K. Likhoded, and S. R. Slabospitskii *Institute of High Energy Physics*

(Submitted 17 May 1979)

Pis'ma Zh. Eksp. Teor. Fiz. 30, No. 1, 81-86 (5 July 1979)

It is shown that the *D*-meson *c*-quark fragmentation function computed in V.G. Kartvelishvili, A.K. Likhoded, and V.A. Petrov, Phys. Lett. **78B**, 615 (1978) is in good agreement with new experimental data on the inclusive production of *D*-mesons in e^+e^- annihilation. nb-GeV²

PACS numbers: 13.65. + i, 14.40.Pe

In recent years the fragmentation function $D_H^Q(x)$ of heavy quarks (Q=c,b,...) to hadrons has become the subject of intensive study.³⁻⁵ The representations of $D_H^Q(x)$ obtained by different techniques have a maximum near $x = |\mathbf{p}_H|/|\mathbf{p}_Q| \simeq 1$ at which there is a characteristic difference of $D_H^Q(x)$ from the fragmentation functions $D_H^q(x)^6$ of light quarks (q=u,d,s) concentrated mainly in regions of small $x: x = |\mathbf{p}_H|/|\mathbf{p}_Q| \simeq 0$. Thus, it is expected that the heavy quark $Q(\overline{Q})$ will fragment into a hadron $H = (Q\overline{q})$, $(\overline{Q}q)$ with momentum \mathbf{p}_H close to the momentum of the quark \mathbf{p}_Q .

One of the representations for $D_H^Q(x)$ obtained by us earlier³ on the basis of a "reciprocity relation" between $D_H^Q(x)$ and the distribution function of quark Q in hadron H, $f_Q^H(x)$, is significantly related to the trajectory parameters of the Regge $Q\overline{Q}$ -system and has the following form:

$$D_{H}^{Q}(x) = \frac{\Gamma(2 + \gamma_{H} - \alpha_{Q} - \alpha_{u})}{\Gamma(1 - \alpha_{Q}) \Gamma(1 + \gamma_{H} - \alpha_{u})} x^{-\alpha_{Q}} (1 - \alpha_{x})^{\gamma_{H} - \alpha_{u}}, \qquad (1)$$

where $a_u = \frac{1}{2}$ are the intersections of the $f - A_2$ trajectories, a_Q is the intersection of the leading trajectory of the $Q\overline{Q}$ system, and γ_H is a parameter determining the behavior of the distribution function $f_Q^H(x)$ (and, consequently, of $D_H^Q(x)$) for $x \rightarrow 1$ and is related to the analogous parameter γ_{π} for $f_q^{\pi}(x)$ by the equation⁷

$$\gamma_{H} = \frac{1}{4} \gamma_{\pi} \left(\frac{1}{1 - \alpha_{Q}} + \frac{1}{1 - \alpha_{u}} \right), \tag{2}$$

where $\gamma_{\pi} = \frac{3}{2}$.

Thus, the heavy quark fragmentation function [Eq. (1)] contains one unknown parameter, the intersection of the $(Q\overline{Q})$ trajectory. It is possible to express a_Q by the masses of the vector m_V and tensor m_T $(Q\overline{Q})$ -meson, assuming exchange degeneracy of the $(Q\overline{Q})$ vector and tensor trajectories⁸:

FIG. 1. Total distribution of charged and neutral *D*-mesons for e^+e^- -annihilation at 7 GeV in terms of the variable $x = |\mathbf{p}_D|/|\mathbf{p}_D^{\text{max}}|$. The curves have been calculated from Eqs. (1) and (7) with the following parameter values: $a_c = -2.2$; $\gamma_D = 0.9 \left(D_D^c(x) = 6.22x^{2.2}\right)$ (1-x)., solid line) and $\gamma_D = 1.5 \left(D_D^c(x) = 13.44x^{2.2}\right)$ (1-x), dashed line). Experimental data have been taken from Ref. 9.

$$a_{Q} = 1 - \frac{m_{V}^{2}}{m_{T}^{2} - m_{V}^{2}}$$
 (3)

Thus, for a c-quark $m_V = m_{\psi} = 3.1$ GeV, $m_T = m_{\chi_2} = 3.55$ GeV, and $a_c \approx -2.2$. The experimental measurement of inclusive hadron spectra $H = (Q\bar{q})$ in e^+e^- -annihilation to hadrons, where²¹

$$D_{H}^{Q}(x) = \frac{1}{\sigma(H)} \frac{d\sigma(H)}{dx} , \qquad (4)$$

$$x = \frac{|\mathbf{p}_H|}{|\mathbf{p}_Q|} \approx \frac{|\mathbf{p}_H|}{|\mathbf{p}_H^{max}|}; \tag{5}$$

is a direct test of Eq. (1) and our assumptions. Here $\sigma(H)$ is the cross section for the $e^+e^- \to H + ...$ process, $|\mathbf{p}_Q| = \frac{1}{2}(S - 4 m_Q^2)^{1/2}$, and for the case of a heavy quark Q, $m_Q \approx m_H$.

FIG. 2. Same as Fig. 1 for neutral (above) and charged (below) *D* mesons singly.

Recent experimental data on inclusive *D*-meson spectra for e^+e^- -annihilation at an energy of $S^{1/2} = 7$ GeV ⁹ allow us to carry out this test for a *c*-quark (Q = c).

We note that in the reaction

$$e^+e^- \rightarrow D + \overline{D} + \dots$$
 (6)

pseudoscalar and vector D^* mesons may arise, which subsequently decay through the $D^* \rightarrow D + \pi(\gamma)$ channel. Actually, the enhancement of the cross section for the production of neutral D-mesons observed in experiment $(\sigma(D^\circ) + \sigma(\overline{D}^\circ) = 3.2 \pm 0.9 \text{ nbarn})$ in comparison with the cross section for the formation of charged D-mesons $(\sigma(D^+) + \sigma(D^-) = 1.7 \pm 0.7 \text{ nbarn})$ may be explained by a substantial contribution of D^* mesons. Thus, the inclusive spectrum of the pseudoscalar D mesons should be written as the sum of two terms

$$\frac{1}{\sigma(D)} \frac{d\sigma(D)}{dx} = (1 - \beta) D_D^c(x) + \beta \frac{1}{2\kappa} \int_{x_-}^{A} \frac{dy}{y} D_D^c(y), \qquad (7)$$

where the first term corresponds to direct D formation, and the second term describes the production of D^* and the decay $D^* \rightarrow D + \pi(\gamma)$. The parameter β describes the probability for the fragmentation of a c-quark to a vector meson, and κ , κ_- , and A determine the kinematic decay of $D^* \rightarrow D + \pi(\gamma)$:

$$\kappa = \frac{q}{m_{D}^{*}}, \quad \kappa_{o} = \frac{q_{o}}{m_{D}^{*}}, \quad q_{o} = \sqrt{m_{D}^{2} + q^{2}},$$

$$x_{\pm} = \frac{x}{\kappa_{o} \mp \kappa}, \quad A = \theta (1 - x_{+}) x_{+} + \theta (x_{+} - 1) \cdot 1,$$

where q is the momentum of the D-meson in the rest system of the decaying D^* , and m_{D^*} and m_{D} are the masses of the vector and pseudoscalar D-mesons, respectively.

It may be thought that sufficiently far from the $D\overline{D}$ formation threshold the vector states of D^* occur three times as often as the pseudoscalar (proportional to the statistical weight 2J+1), i.e., $\beta = \frac{3}{4}$.

The inclusive spectrum of pseudoscalar D-mesons calculated for this value of β taking into account the decay kinematics according to Eq. (7) is given in Fig. 1 in comparison with the experimental data.

The theoretical curve is normalized such that

$$\sigma(D) + \sigma(\overline{D}) = 2\sigma(e^+e^- \rightarrow c\overline{c}) = 2\cdot 3\cdot \left(\frac{2}{3}\right)^2 \frac{4\pi\alpha^2}{3S}.$$
 (8)

The 5.0-nbarn cross section obtained by averaging over the energy interval $S^{1/2} = 6$ -7.8 GeV is in good agreement with the experimental value of 4.8 ± 1.3 nbarn (this agreement indicates that the cross section for the production of *F*-mesons and charmed baryons at this energy is small in comparison with the *D*-meson production cross section).

As can be seen in Fig. 1, there is good agreement between our predictions and experiment.

The asymmetry in the yield of charged and neutral D-mesons arises because of the fact that the D^{*+} meson decays through the $D^{*+} \rightarrow D^{+} + \pi^{\circ}(\gamma)$ and $D^{**} \rightarrow D^{\circ} + \pi^{+}$ channels with approximately the same probability. While the neutral $D^{*\circ}$ decays exclusively through the $D^{*\circ} \rightarrow D^{\circ} + \pi^{\circ}(\gamma)$ channel. Taking this fact into account, it is easy using Eq. (7) to calculate the inclusive spectra of charged and neutral D-mesons, which are shown in Fig. 2. Thus,

$$\sigma(\bar{D}^{\circ}) + \sigma(\bar{D}^{\circ}) = 3.44 \text{ nbarn},$$

 $\sigma(\bar{D}^{+}) + \sigma(\bar{D}^{-}) = 1.56 \text{ nbarn}$

which should be compared with the experimental values 3.2 \pm 0.9 nbarn and 1.7 \pm 0.7 nbarn, respectively.

Proceeding from standard assumptions about the suppression of the strange sea,8 we expect the production cross section for F-mesons to be $\sim 20\%$ of the production cross section for D-mesons.

In conclusion, we note that the parameter γ_H in Eq. (1) was computed under the assumption of tensor dominance for the coupling between the Pomeron trajectory and hadron H^{10} [see Eq. (2)]. Under this assumption the heaviness of the quark Q leads to a reduction in the cross section a_0 and a decrease in the parameter γ_H which, in turn, leads to a decrease in the total cross section for the interaction of particles containing heavy quarks. In the quark-patron model this corresponds to a reduction in the normalization of the sea of quark-antiquark pairs. However, if Eq. (2) is not satisfied, we have two independent parameters a_O and γ_H in the fragmentation function (1). As an example, Figs. 1 and 2 contain dashed lines representing the D-meson distributions computed under the assumption $\gamma_D = \gamma_\pi = \frac{3}{2}$. As can be seen from the figures, the existing experimental data do not permit us to give preference to either of these two possibilities ($\gamma_D = 0.9$ or $\gamma_D = 1.5$).

The authors are grateful to S.S. Gershtein and V.A. Petrov for fruitful discussions.

77

¹⁾Tbilisi State University

²For small energies there is an ambiguity in selecting a scaling variable, which vanishes in the limit of infinite energy. The variable x defined by Eq. (5) is, in our view, the most suitable one at finite energies.

¹M. Suziki, Preprint LBL-6173, Berkeley (1977); Preprint TH 2369-CERN, Geneva (1977).

²Y.D. Bjorken, Phys. Rev. **D17**, 171 (1978).

³V.G. Kartvelishvili, A.K. Likhoded, and V.A. Petrov, Phys. Lett. 78B, 615 (1978).

⁴S. Pokorsky, Warsaw preprint IFT16/77 (1977).

⁵Y. Dias de Deus, Nucl. Phys. **B138**, 465 (01978).

⁶R.D. Field and R.P. Feynman, Phys. Rev. **D15**, 2590 (1978).

P.V. Chliapnikov, V.G. Kartvelishvili, V.V. Khiazev, and A.K. Likhoded, Nucl. Phys. B148, 400 (1979).

⁸V.G. Kartvelishvili and A.K. Likhoded, Yad. Fiz. 29, 757 (1979) [Sov. J. Nucl. Phys. 29, 390 (1979)].

⁹P.A. Rapidis et al., Preprint SLAC-PUB-2184, LBL-8143, Stanford (1978).

¹⁰R. Carlitz, M.B. Green, and A. Zee, Phys. Rev. **D4**, 3439 (1971).