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We consider the absorption of ultrasound (geometrical resonance) in an
intermediate state with ka, > 1. We obtain an amplitude-modulated oscillatory
dependence of the absorption as a consequence of Andreev reflections of electron
excitations from the boundaries of normal and superconducting layers. It can be
shown that this function explains the experiments in Refs. 1 and 2.

PACS numbers: 74.30.Gn

Interest in study of the absorption of ultrasonic waves (UW) in the intermediate
state (IS) is based on the fact that this technique is in essence unique, leading to
experimental information concerning IS structure produced by an external magnetic
field within a superconductor of the first kind. Electron excitation of the normal
layers, whose distintive characteristic as first shown by Andreev®™’ is a mechanism for
reflection from the boundaries with a superconductor, is a fundamental contribution
to the interaction with UW in the temperature domain T < T} in IS. Proceeding from
the Andreev laws for the dynamics of electron excitations in the IS, several cases for
the passage of UW waves through the IS were studied theoretically.” An absorption
mechanism was found in Ref. 4 which is related to the vibration of the interphase
boundaries, and has subsequently been studied in a region of IS filamentary struc-
ture.”™ In 1967 Andreev was the first to predict oscillatory absorption of UW'; to
calculate it, he solved the kinetic equation in the Fourier components in terms of the
inverse value of the double thickness of the normal layer. For kay ~1 and /,D > a,, the
periodicity of the absorption was found as a function of a,. The influence of magnetic
quantization on the absorption has also been discussed,”-®' and the properties of UW
propagation in the case of their oblique impact on an IS structure.”

Below in the framework of a simple model (a closed Fermi surface with two
revolution points in the extremal cross section) the propagation of a longitudinal UW
through an IS is analyzed at 7<7, assuming the following sequence of inequalities is
satisfied, /> Da,y>A, where [ is the electronic excitation mean free path length, D is
their orbit diameter in the critical magnetic field H_, a, is the thickness of the normal
phase layer, and A is the UW wavelength. The UW with wave vector k is propagated
transverse to the system of alternating normal and superconducting layers in the direc-
tion of the X-axis. A magnetic field equal to H, in the normal layer is oriented along
the Z-axis. The boundary dividing the normal and superconducting phases (the NS-
boundary) lies in the YZ-plane.

The kinetic equation in the field of the UW deformation u, =u,, exp(k-
r — imt) in the normal layer may be written as (see Refs. 10 and 11)

(ikv-io +v) ¥+ d¢/ot, = Njuy "
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FIG. 1. Electron trajectory in a magnetic field: a-normal metal; b-intermediate state (two reflections be-
tween the revolution points 1 and 2; the distance between 1 and 2 along the X-axis is equal to 4 and is
independent of the position of point 1); c-intermediate state (one reflection, d depends on the position of
revolution point 1, d #d ). The thin vertical lines are planes of equal phase of the UW.
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where ¢ is found from f=f, — (df,/d¢) ¢ (f, and f are the equilibrium and nonequi-
librium electron distribution functions), the notation is analogous to that in Ref. 11. In
view of the small value for the speed of sound in comparison with the electron velocity
v, we neglect the derivative of ¢ which is proportional to @ in Eq. (1). We shall seek a
solution in the normal layer, as usual, in the form

by . 5
Ulty) = [ Ay (t) uik(‘z)expitf (kv (t,) +v)dt, Y de, . @)
-0 1

We note that in the coordinate system which is related to the electron excitation
u, ~(kv — w) and, since kv>w, then on the NS-boundary for a change in the sign of
the velocity v— — v we shall have ¥(v) + ¢( — v) = 0, which is needed to satisfy the
Andreev boundary condition.

Taking into account kLH and the periodicity in the selected geometry A, #;, in
terms of the period of revolution of the electron excitation in the magnetic field, the
equation for the absorption coefficient, which is formally analogous for the normal
metal, may be written in the form
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where A is a coefficient depending on the properties of the medium and the frequency
of the UW,'*" and p(!) = Ay gy tiu/ |kv(;, |'/% where the lower index in parenthesis
indicates at which of the two revolution points for which kv, ,, = 0 the values of the
corresponding quantities should be taken. In the IS 7(X,,,) turns out to depend on the
position of the electron orbit on the X-axis, i.e., on the coordinate of the revolution
point X;,.

We shall expand the integral which is the argument of the sine in the equation for
the oscillating part of the absorption into a sum of integrals, where for the limits we
select the successively fixed times of collision of excitation with the NS-boundaries,

ie, fi2.. =00 .+ §7.4..4 £ . Taking into account that f;®|kv|dt = kD, we

iy

calculate the entire integral, writing it as f ::j;kvdt = kd, where d is a certain effective
diameter of the excitation trajectory, introduced in analogy with the normal metal
(Fig. 1). For the case of an even number of reflections from the NS-boundaries be-
tween the revolution points, d is

d=(-1)"{0 +1D 2ay -D}, Q)

where /= [(D — ay)/2ay], [] is the integral part of the expression in brackets
([x] = —1if —1<x <0). The curve for d = fD /2a,) is given in Fig. 2. For the case
of an odd number of reflections d will be a piecewise linear function of X, with limits
varying from — a, to ay whose explicit form in this case is not significant. Averaging
the oscillating part of the absorption I (X for kay> 1 over the thickness of the layer
leads to the value (I" ) = §erI° Xy)dX /55X, W- Since the number of reflections is a
function of X, for given ay and D, the integral in the numerator is divided into two
integrals--for orbits with an even and the odd number of reflections. Thus, I’ (even) is
independent of X,, and the problem is reduced to the calculation of §o'dX y, (even),
which is equal to ay — |d|. I (odd) is a rapidly oscillating sign-variable function of
X1, and its integral tends to zero. Thus, (I") turns out to be a modulated function
equal to ay — |d |/ay T (even) We shall write the equation for |d |:

| d| =(_1)"(D—{m+.2_(1—(-1)")!2a,v, ‘ ®

where m = [D /2ay ], n=[D /ay}.
We obtain the oscillating part of the absorption in the IS in the form

~ P - d
T ~AT" (HK)" il\i._.‘_.l
a

norm.
N
where AL, ... (H,) is the amplitude of the oscillations of the geometrical resonance in

the normal metal in the field H_, and 7 is the normal phase density.

sin (kd + L), 6)

From Eq. (6) we see that the number of oscillations of the absorption in one
modulation period is equal to twice the thickness of the normal layer 2a,, expressed in
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units of the wavelength of the UW 4, i.e., 2a,, = nd, where n is the number of oscilla-
tions in one modulation period. For the case D<a,, the results go over to the equation
for the normal metal, i.e., d—D, [(ay — |d |)/ay ]—1, and only the density variation
of the oscillation amplitudes remains in Eq. (6) which may be used to evaluate the
normal phase density in the IS.

A comparison made with the experimental results'"-? shows that Eq. (6) qualita-
tively describes the complex periodicity of the observed relationships. A quantitative
comparison with experimental data is proposed to be carried out in a subsequent
publication. Here we shall only indicate that the thickness of the layer of normal phase
in Ref. 1 and 2 in the calculation based on Eq. (6) is varied from 1072 to 10~ cm
and depends on the external magnetic field.
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