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It is shown that the increase in the energy of charged particles in a strong
gravitational field and in parallel magnetic and electric fields can be limited, that in
special relativity their energy cannot increase simultaneously with the transverse
component of the velocity, and that the maximum magnetic bremsstrahlung can
change its direction with time.

PACS numbers: 41.70. + t,03.30 + p

At present, astrophysical objects such as neutron stars are known which have a
strong gravitational field whose dimensionless potential ¥ = — GM /c*R,~ —O0.1.
These objects also have a strong magnetic field H. If the magnetic axis does not
coincide wih the axis of rotation or if the magnetic field varies for other reasons, then
an electric field E, which accelerates charged particles, will appear.

Under these conditions a number of qualitative mechanical and electrodynamic
relativistic effects occur in a strong gravitational field. We shall examine them in the
post-Newtonian approximation, i.e., linear in ¢ and in its derivatives.

Since the detailed structure of these fields is not known, we shall examine a simple
model, which makes it possible to obtain the mentioned effects by avoiding cumber-
some calculations. Let us assume that the E, H, and V¢ vectors are parallel to each
other and vary over a much greater distance than the characteristic length of accelera-
tion of the particles and their Larmor radius. Therefore, these vectors will be assumed
constant in the equations of motion and of particle radiation, and their dependence on
time and distance will enter into the calculation as a slowly varying parameter.

1. Acceleration of particles in the electric field. In the approximation indicated
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above, the time and space components of the equation of motion of a particle have the
form
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Here m and e are the mass and charge of the particle; v is its velocity, whose compo-
nents are dx “/dt (¢ is the time in the system of a distant observer); E and H are vectors
with the components E, and H,, respectively; and
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We readily infer from Eq. (1) that for E=0 and dy/dt =0 the quantity
(1 +-2¢)I" will be conserved and may be regarded as the dimensionless energy of the
particle. From Eq. (3) we obtain the relation

B = ve?=1+4y—(1+2¢)/T2 51+4y

for the relat1v1stlc particles (I'>1); when ¢y = —0.1, 8., = 0.6.
Setting v=c¢ in Eq. (1), we obtain
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where I is the initial value of I". This solution is valid under two conditions. First, the
characteristic time 1/(cV#) must be short compared to the variation time of the fields
E and V4. This condition is satisfied for known objects. Second, the relation E /Vi
must also vary sufficiently slowly. If the electric field is produced in the same way as
the field of the oblique rotator, then it and V¢ will vary as 1/R? so the second
condition is also satisfied. Equation (4) shows that, in contrast to the special theory of
relativity, the energy of the particle, rather than increasing indefinitely, will approach
a finite limit

€ma = me L = eE/2Vy.
If we assume that E~10° (cgs) and V=107 =10 % cm !, then ¢,,, ~2x 10"
erg. The maximum energy is independent of the particle mass.
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2. Particle motion in the magnetic field and in the electric field parallel to it. If
both fields are directed along the z axis, then for the complex quantity v, =v, + v,
we have ‘
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where 2 is the cyclotron frequency.
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Note that the situation in the general theory of relativity is qualitatively different
from that in special relativity. In the latter case, the sign of the time derivative of the
energy, for the conditions examined by us, is opposite to that of the transverse velocity
of the particle. In fact!"":

15)_ =\/1—v2/cz<v xﬁ—

Multiplying this equation by v, , we obtain:
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In contrast, the energy and transverse velocity in our case can increase simultaneously
if I, /T <2. Thus, the transverse velocity of sufficiently energetic particles always
increases.

3. Magnetic bremsstrahlung. The Maxwell equations for variable fields E' and H’
in the post-Newtonian approximation have the form

divH’=0; divE = 47(1 - ¢)p;

1 gdH’

1
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Here ¢* = (1 +2¢)c and j = pv. Setting H' = rot A, we obtain

E' =2 « — — - .
c* oJt v
Thus the equations for the potentials ¢ and A have the form
1 #%¢ 1 %A 4n
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where r, is the radius vector of the point charge. Using the method described in Ref. 2,
we obtain an analog of the Shutt formula:

212 JETP Lett.,, Vol. 30, No. 4, 20 August 1979 L.E. Gurevich and S.D. Dynkin 212



sin 0 d 6

(1+49)e? Q= 7 [2 3
= v of(1+2¢f“3"cos 6)3 Bty

c

v

00
3
v=1

+{[8, — (1 +2¢) cosd ]/ sind }ZJi] )

where 0 is the angle between the direction of propagation and the field H, v is the
number of the harmonic, and the argument of the Bessel function and its derivative is

VB_L/(I +2¢~ Bycos 6)

The magnetic bremsstrahlung is qualitatively different from the corresponding
effect in special relativity. On the one hand, for any B < ., the radiation is concen-
trated near the angle 6,,, which is determined by the relation cosf,, = B/ Byax-
(When B = B..x» B1 = 0 and the radiation will be absent.) Thus, the “sharpness” of
the diagram is also preserved in general relativity. On the other hand, we have seen
[Eq. (5)] that B, varies slowly with time, and hence the angle 8,, corresponding to the
radiation maximum must also vary. Since the sign of variation of 5, depends on the
particle energy, the direction of maximum radiation is different for particles of differ-
ent energies. This effect is practically absent in special relativity because the transverse
velocity of the particle and hence its radiation decrease with increasing energy.
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