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It is shown that the conductivity in a two-dimensional system with disorder at low
frequencies depends logarithmically on the frequency. The connection between
this result and the conclusions of Ref. 1 about the total localization in the two-
dimensional case is discussed.

PACS numbers: 72.10.Bg

This work was stimulated by a paper'" in which it was asserted that all single-
particle states in the defect field in the two-dimensional case are localized. We shall
investigate the quantum corrections to the diffusion law or to the conductivity of an
infinite system as a function of the frequency w.

The conductivity o can be expressed in terms of the Green’s functions of the
Schrédinger equation with a random potential®:
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where D (w)=D (@) is the diffusion coefficient of a particle with an energy E, d is the
dimension of the space, G® and G* are the lagging and leading Green’s functions,
respectively, and the angle brackets { ) denote averaging over the possible locations
of the impurities. The energy E is assumed to be large compared with the reciprocal
time of the mean free path, #/7. We shall use the “cross technique” of averaging™ to
calculate the average values. As is well known, for E7/#> 1 the diagrams with crossed
dashed lines (for example, the plot in Fig. 1a) are small. Disregarding these diagrams,
we obtain D = D, = v*r/d (for simplicity, the scattering is assumed to be isotropic
T=T,).

To calculate the quantum corrections, we must examine the diagrams in Fig. 1.
Such diagrams were earlier examined by Langer and Neal,”” who showed that each

N N
\/ + ' +
A /N
a b

228 0021-3640/80/160228-05$00.60 ®© 1980 American Institute of Physics 228




individual diagram gives a small correction to the diffusion coefficient. It is important
that the sum of all the ladder-type diagrams, which is illustrated in Fig. 1d by a wavy
line, has a characteristic diffusion pole
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This peculiarity of the “fan-shaped” ladder coincides in total momentum with the
well-known property of the ordinary diffusion ladder
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as a function of the transferred momentum q. Such a coincidence is a consequence of
the invariance with respect to time reversal as a result of transformation of the wave

functions #( p) — ¥*( — p). Henceforth, the wavy line in the diagrams will denote
both the ordinary diffusion ladder and the fan-shaped ladder.

In diagram 1d we examine integration over the momenta g of the wavy line. The
singular frequency contribution comes from the region of small q. Therefore, p,~ — p
and the singular quantum correction to the conductivity is negative. After calculation
we obtain"’
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FIG. 2.
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For the one-dimensional case the localization length is of the order of the mean free
path /~v7 and the diffusion region ¢g/«1 is missing. Therefore, Eq. (5) will apply to a
wire of cross section S>#” p —2, for which a diffusion region exists,'® and the second
term in the braces is a small correction.

For simplicity, we have explicitly calculated the conductivity. The quantum cor-
rection for the correlator {pp) can also be determined. We find that the diffusion
equation (4) remains true and the diffusion coefficient is in fact given by Egs. (5)—(7).

Of particular interest is the two-dimensional case, in which the correction to the
conductivity increases logarithmically with decreasing frequency, and hence a ques-
tion arises about the summation of the set of principal logarithms of the type
[(#/E7) In(1/w7)]". The diagrams giving contributions of order [(#/E7) In(1/w7)}".
are illustrated in Fig. 2. The number of different diagrams and the complexity of their
structure increase dramatically with increasing order. In each order and for any block
diagram [(#/E7) In(1/@7)]". coincides with the number of integrations over the mo-
menta of the wavy lines. It was found, moreover, that in second order the diagrams in
Fig. 2b cancel each other and the contribution such as the diagram in Fig. 2a is
cancelled by the contribution from the diagram in Fig. 2¢. In other words, the term
[(A/ET) In(1/w7)]*. in Eq. (6) is missing.

We can assume that this result, rather than being accidental, is a consequence of a
renormalized invariance.'® In fact, for ¥7<1 and g = O there are no parameters with
dimensions of length or frequency, and there is only one dimensionless parameter
R, = 1/E7, which plays the role of a bare interaction constant and coincides with the
resistance of a square of the film for w7~ 1, measured in units of 7e *i~13 k2.
Therefore, if the frequency scale is changed ot — w/w,, it can be compensated for by
a corresponding change of concentration of the impurities according to the law
Ry, — R (w)), so that R (w7,R,) = R [w/w,, R (w,)]. Differentiating this equation with
respect to @, = @, we obtain an equation for the renormalized group in the form

2
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The solution of Eq. (8) for R «1 shows that all terms of order (1/Er)" In" (1/w7) with
n>1 are missing in the expression for D = #i/mR.

The conductivity at low frequencies can be solved by the f(R) function when
R = 1. In this region, however, f (R ) depends on the specific features of the model and
to determine it is as difficult as it is to calculate R () directly. Nonetheless, Eq. (8) can
be used for a qualitative interpolation between the regions of small and large w. If the
disorder is extremely large, then the states of the particle are localized, and hence (R )
increases when R>1 (for example, f= —2R for R~ ~?). If f(R) has no zeros at
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finite R, then R (w) decreases to zero as @ — 0. Thus, in the two-dimensional case all
the states are localized at arbitrarily low concentrations of the impurities. If f(R)
vanishes at a certain point R,, then R (w) — R, as @ — 0. Generally, the vanishing of
the static conductivity is not equivalent to localization, which corresponds'” to a den-
sity correlator of the form

A(q)
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If, however, a single invariant charge R exists in the scale transformations, then the
small R’s correspond to a large disorder and hence to localization.™

Thus our results are very similar to those of Abrahams et al.,'"! although the
details of their calculations have not been published. The difference is that the variable
in the renormalized group of Abrahams et ql.'" is the sample size L rather than the
frequency w. For a sample of finite size it is important to know the method used to
determine the conductivity and the frequencies in question. In a finite-size sample
absorption occurs at frequencies o > #i/mL 2. On the other hand, if o> DL 2, then the
logarithms in the quantum corrections are independent of L. In other words, if R<1,
then there exists a frequency region DL ~*>w>#/mL ? for which the quantum correc-
tions are given by Eq. (6) in with (L //)? is substituted for 1/e7 in the argument of the
logarithm. Therefore, we can assume'”’ that

_.iR_._ = B(R) = —LRZ + O(R3). (10)
dinL-? 27

If the sample is connected in a circuit, then the discrete levels will have a width of the
order of ¥ ~#ADL 2. Therefore, the frequency can be set equal to zero. The divergence
in this case is cut by ¥ and we can again attempt to write Eq. (10). It is important to
note that the function f coincides with the function 3 only when R<1, i.e., in the
approximation of the principal logarithms, and when R>1 fis different from 3. Every-
thing said about the behavior of the function f at small R evidently applies to the
function S.

The conductivity in a two-dimensional disordered system was numerically mod-
eled in Refs. 9 and 10, in which the level shift in a finite sample due to a change of the
boundary conditions was calculated. This quantity, which is useful for determining the
onset of localization in numerical experiments, is equal in order of magnitude to the
conductivity. However, the exact relation between these quantities is not known. Our
conclusions coincide better with those of Ref. 9.

In conclusion, we note that the energy-relaxation processes cut off the logarithms
in Eq. (6) at an appropriate parameter 1/7, if o7, <1.

"'"The importance of taking into account the diffusion poles in the calculation of the quantum corrections for
the conductivity was pointed out for the first time by Maleev and Totrverg'; however, they did not
examine the fan-shaped diagrams and hence the corrections calculated by them have a smallness w/E that
complements Eqgs. (5)—(7).
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