On the structure of the superdiamagnetic state
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The general form of gauge-invariant functional of free energy, valid for the
ferromagnetic and superdiamagnetic cases, is shown. Using an example of the
systems with electron-hole pairing, it is shown that the superdiamagnetic state can
occur only as an inhomogeneous state. In particular, it can occur in the electron-
type ferroelectrics in the region of domain walls.

PACS numbers: 75.20. — g, 77.80.Dj

1. In this paper we show that a systematic account of the interband interactions in
systems with electron-hole pairing reduces the homogeneous current'” to zero. On the
other hand, as was shown in Ref. 2, the response of the system y ' = M /B to the total
magnetic field “B” (M is magnetization) goes to — oo at a temperature 77, , which
corresponds to the onset of an imaginary parameter of order 4,,, . Therefore, accord-
ing to the expression H = B /u the magnetic field H is produced spontaneously at
T =T}, even in the absence of magnetic induction B (x=0at T = T7,).

The ferromagnetic state (spontaneous B ), however, occurs when the response of y
to H(y=M/H) goes to + oo, i.e., it = + oo, and hence B = pH is finite even at
H = 0. To show in the general form that orbital ordering is possible with respect to H
(superdiamagnetism) and with respect to' B (ferromagnetism), we shall use here the
free-energy functional without solving it, in which the nonequilibrium generalized
momentum p plays the part of the order parameter:

1
F(p) m———p? -pA+ o’ rotA-B, )
27 2

Here 7 is the total polarization operator of the system, whose Fourier components
have generalized-momentum operators at the vertices

p ""17' (Vel9* 1 ¢9'Y), e=Fi=c=m=1,
7 2

where 4 is the particle density of the system. Variation of functional (1) with respect to
A gives the current, and the equilibrium value p = p, is determined by minimizing (1)
with respect to p.

Taking this into account, we can easily see that the response of the system to the
field A is

(g = {mg+m)Ag. @
In accordance with the condition for gauge invariance, 7, = — n for all longitudinal
q(ql|A). Therefore, when the transverse momenta q, are small, it appears that j,
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~x'q A, and evidently y ' may diverge in the paramagnetic and diamagnetic direc-
tions, depending on the sign of the sum (7, + n). It is important to note that both
types of divergence are described by the same gauge-invariant functional, and the
standard functional of the ferromagnet F = aM? — MH is a special case of functional
(1) in which the third (diamagnetic) term n(A?/2) was dropped.

2. The electron-hole pairing with an imaginary order parameter is unique in that
the Bloch representation must take into account the interband-interaction terms of the
type gsa; a,a;" a,, which without leading to a logarithmic singularity, are the sources
of 4,,, when the interband matrix element P;, is nonvanishing. Although the indicated
terms are missing in the Cohn—Lattinger representation, it has a hybridization of the
type 2, (py2XK)ay ay, which we take into account simultaneously with 4,,. As a
result, the equations for the Green’s function G;; (r,r') (7, j = 1,2 are the band indices)
have the form ‘

A P V » »r oo r »
(w ~€))G, (1, 17) +<PT)G“(r, 1)+ fdr YA (1, 17°)G, (17, 1 7)
=8( -17), @
(@ —&) Gy (r, 17) + P V)c ) fdeTT AL (1, 1) Gy (57 1
2’ UL 5/ O, 1)+ fArTT AL L, 17 Gy (257 17) =0
If we assume that the parameter 4., (r,7') in Eq. (3) depends only on the difference

(r — 7’), then the spectrum for single-particle excitations &,,,(k)

= 4 v (vrk)? + (4 + PxKk)?, i.e,, it is asymmetric with respect to k when 4,,, (k) is
even.

Determining in this case the G;; functions from Eq. (3) and substituting them in
the usual expression for the current

i

i) = TX (V. -VIUG,,1%) - 6,1, £°)]

€
" \ @
+ 2¢[P 6, 1,17 + PZIG”(r’ r')]Jr'_’ ,

we can see that the homogeneous current vanishes, since the interband current'"' is
exactly compensated for by the intraband current, which is produced because of the
aforementioned asymmetry of the single-particle spectrum.

Note that Batyev'® attempted to eliminate the homogeneous current by redefin-
ing the current operator without allowance for the interaction of the type g:a;" a,a;" a,
or for the hybridization. In fact, he used the time-dependent, first-order equation in
the problem involving the exchange potential, which is incorrect.’** Moreover, even if
such an assumption were valid, the additional term in the current™ remains finite only
in the case of an infinite-range potential. We emphasize that an incorrect determina-
tion of the interband current™ precludes its compensation by the intraband current,
i.e., the homogeneous current is finite, which contradicts the Bloch theorem.
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3. If the dependence of A, on the center-of-mass coordinate R = (r 4 r')/2 of

a
the electron-hole pair is retained in Eqgs. (3) and they are expanded in 4 (R) and P,, Xk

near Ty, ,'" then we obtain the following expression for the current after averaging
over the unit cell: '
. 7€ (3)n -y =
8(m T].m )2

Note that expression (5) satisfies the condition for the transverse current
div j = 0. In the two-band scheme div j~ #¥u, vanishes after integration over the unit
cell because of the orthogonality condition (1, and #, are Bloch modulation factors of
bands 1 and 2).

Without restricting ourselves to the finite number of bands, we can obtain the
following expressions for div j:

. e e
divi = — { Vlr, 1) p(1*, 1) dt “ + C.C. (6)
1
where

Ve, 1) =V(|t -t*}) p(r, 1)

p(rr”) is the complete density matrix, which takes into account all the bands and
V (ir — r"js the exchange-interaction potential. Using the Hermitian density matrix,
we can see that the condition div j = 0, allowing for all the bands, is fulfilled locally.

4. As seen in Eq. (5), the current in the ground (superdiamagnetic) state is non-
vanishing if the minimum of the free energy corresponds to the inhomogeneous pa-
rameter A;,. As is well known, the inhomogeneous state occurs when the Fermi
surfaces of bands 1 and 2 are not completely congruent, regardless of the phase of the
parameter A."”" The coefficient ¥, of expansion of the free energy F with respect to the
order parameter in the y,(d4 /O R)* term or the y,¢4°4 % term changes its sign at a
higher temperature than the coefficient @ in the a4 ? term. A peculiarity of states with
4,,, is the anisotropy of the coefficient y,. Note that the true order parameter in this
case is g4, rather than A, which, if we take into account expression (5) and the
Maxwell equation curl H = 47j, corresponds to ordering in the magnetic field H.

The asymmetry of the single-particle spectrum indicated above, after substituting
—k for k in the case of homogeneous 4, , leads to an inhomogeneous state even
when the Fermi surfaces are totally congruent. In this case g2, ~A4yy,, i.e., j~A1%,.

5. The assertion that the interband interactions specify the phase of the order
parameter is valid only in the homogeneous case. Because an invariant of the type

PuAIm(AReﬂ!'ad A= ArpgradAp ) D

exists in the free energy, the phase of the parameter 4 is a function of the coordinates.
Such a state can be the ground state in the n-type ferroelectric materials®® in which the
polarization is proportional to Ag,. The maximum current occurs in the region of the
domain wall in which the phase passes smoothly through 7/2.
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It follows from the above discussion that the structure of the superdiamagnetic
state is highly sensitive to the high-temperature symmetric phase.

The authors are sincerely grateful to V. L. Ginsburg, L. V. Keldysh, and D. A.
Kirzhnits for useful discussions.
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