On the structure of the superdiamagnetic state

B. A. Volkov, Yu. V. Kopaev, M. S. Nunuparov, and V. V. Tugushev *P.N. Lebedev Physics Institute, USSR Academy of Sciences*

(Submitted 13 June 1979)

Pis'ma Zh. Eksp. Teor. Fiz. 30, No. 6, 317-320 (20 September 1979)

The general form of gauge-invariant functional of free energy, valid for the ferromagnetic and superdiamagnetic cases, is shown. Using an example of the systems with electron-hole pairing, it is shown that the superdiamagnetic state can occur only as an inhomogeneous state. In particular, it can occur in the electron-type ferroelectrics in the region of domain walls.

PACS numbers: 75.20. - g, 77.80.Dj

1. In this paper we show that a systematic account of the interband interactions in systems with electron-hole pairing reduces the homogeneous current^[1] to zero. On the other hand, as was shown in Ref. 2, the response of the system $\chi' = M/B$ to the total magnetic field "B" (M is magnetization) goes to $-\infty$ at a temperature $T_{\rm Im}$, which corresponds to the onset of an imaginary parameter of order $\Delta_{\rm Im}$. Therefore, according to the expression $H = B/\mu$ the magnetic field H is produced spontaneously at $T = T_{\rm Im}$ even in the absence of magnetic induction B ($\mu = 0$ at $T = T_{\rm Im}$).

The ferromagnetic state (spontaneous B), however, occurs when the response of χ to $H(\chi=M/H)$ goes to $+\infty$, i.e., $\mu=+\infty$, and hence $B=\mu H$ is finite even at H=0. To show in the general form that orbital ordering is possible with respect to H=0 (superdiamagnetism) and with respect to H=0 (ferromagnetism), we shall use here the free-energy functional without solving it, in which the nonequilibrium generalized momentum \mathbf{p} plays the part of the order parameter:

$$F(p) = -\frac{1}{2\pi} p^2 - pA + n \frac{A^2}{2}, \quad \text{rot } A = B.$$
 (1)

Here π is the total polarization operator of the system, whose Fourier components have generalized-momentum operators at the vertices

$$\hat{p}_q = \frac{1}{2i} \left(\nabla e^{i\mathbf{q}\mathbf{r}} + e^{i\mathbf{q}\mathbf{r}} \nabla \right), \quad e = \overline{h} = c = m = 1,$$

where h is the particle density of the system. Variation of functional (1) with respect to **A** gives the current, and the equilibrium value $\mathbf{p} = \mathbf{p}_0$ is determined by minimizing (1) with respect to \mathbf{p} .

Taking this into account, we can easily see that the response of the system to the field A is

$$i_{\mathbf{q}} = -(\pi_{\mathbf{q}} + n)\mathbf{A}_{\mathbf{q}}. \tag{2}$$

In accordance with the condition for gauge invariance, $\pi_{\mathbf{q}} = -n$ for all longitudinal $\mathbf{q}(\mathbf{q}||\mathbf{A})$. Therefore, when the transverse momenta \mathbf{q}_{\perp} are small, it appears that $\mathbf{j}_{\mathbf{q}}$

 $\sim \chi' \mathbf{q}_{\perp}^2 \mathbf{A}_{\mathbf{q}}$ and evidently χ' may diverge in the paramagnetic and diamagnetic directions, depending on the sign of the sum $(\pi_{\mathbf{q}} + n)$. It is important to note that both types of divergence are described by the same gauge-invariant functional, and the standard functional of the ferromagnet $F = \alpha \mathbf{M}^2 - \mathbf{M}\mathbf{H}$ is a special case of functional (1) in which the third (diamagnetic) term $n(\mathbf{A}^2/2)$ was dropped.

2. The electron-hole pairing with an imaginary order parameter is unique in that the Bloch representation must take into account the interband-interaction terms of the type $g_3a_1^+a_1a_1^+a_2$, which without leading to a logarithmic singularity, are the sources of $\Delta_{\rm 1m}$ when the interband matrix element P_{12} is nonvanishing. Although the indicated terms are missing in the Cohn–Lattinger representation, it has a hybridization of the type $\Sigma_{\bf k}({\bf p}_{12}\times{\bf k})a_{1\bf k}^+a_{2\bf k}$, which we take into account simultaneously with $\Delta_{\rm 1m}$. As a result, the equations for the Green's function $G_{ij}({\bf r},{\bf r}')$ (i,j=1,2) are the band indices) have the form

$$(\omega - \hat{\epsilon}_1)G_{11}(\mathbf{r}, \mathbf{r}') + \left(\mathbf{P}\frac{\nabla}{i}\right)G_{21}(\mathbf{r}, \mathbf{r}') + \int d\mathbf{r}'' \Delta_{1m}(\mathbf{r}, \mathbf{r}'')G_{21}(\mathbf{r}'', \mathbf{r}'')$$

$$= \delta(\mathbf{r} - \mathbf{r}'), \tag{3}$$

$$(\omega - \epsilon_2^{\wedge}) G_{21}(\mathbf{r}, \mathbf{r}) + \left(\mathbf{P}^* \frac{\vec{\nabla}}{i} \right) G_{11}(\mathbf{r}, \mathbf{r}) + \int d\mathbf{r} \Delta_{1m}^*(\mathbf{r}, \mathbf{r}) G_{11}(\mathbf{r}, \mathbf{r}) = 0.$$

If we assume that the parameter $\Delta_{\rm Im}$ (r,r') in Eq. (3) depends only on the difference (r-r'), then the spectrum for single-particle excitations $\tilde{\epsilon}_{1,2}(k)$

 $=\pm\sqrt{(\mathbf{v}_{F}\mathbf{k})^{2}+(\Delta+\mathbf{P}\times\mathbf{k})^{2}}$, i.e., it is asymmetric with respect to \mathbf{k} when $\Delta_{Im}(\mathbf{k})$ is even.

Determining in this case the G_{ij} functions from Eq. (3) and substituting them in the usual expression for the current

$$\mathbf{j}(\mathbf{r}) = T \sum_{n} \left\{ \frac{i e}{m} \left(\overrightarrow{\nabla}_{\mathbf{r}'} - \overrightarrow{\nabla}_{\mathbf{r}} \right) [G_{11}(\mathbf{r}, \mathbf{r}') - G_{22}(\mathbf{r}, \mathbf{r}')] + 2e[P_{12}G_{21}(\mathbf{r}, \mathbf{r}') + P_{21}G_{12}(\mathbf{r}, \mathbf{r}')] \right\}_{\mathbf{r}' \to \mathbf{r}}$$
(4)

we can see that the homogeneous current vanishes, since the interband current^[1] is exactly compensated for by the intraband current, which is produced because of the aforementioned asymmetry of the single-particle spectrum.

Note that Batyev^[3] attempted to eliminate the homogeneous current by redefining the current operator without allowance for the interaction of the type $g_3a_1^+a_1a_1^+a_2$ or for the hybridization. In fact, he used the time-dependent, first-order equation in the problem involving the exchange potential, which is incorrect. [4,5] Moreover, even if such an assumption were valid, the additional term in the current [3] remains finite only in the case of an infinite-range potential. We emphasize that an incorrect determination of the interband current [3] precludes its compensation by the intraband current, i.e., the homogeneous current is finite, which contradicts the Bloch theorem.

3. If the dependence of $\Delta_{\rm Im}$ on the center-of-mass coordinate $\mathbf{R} = (\mathbf{r} + \mathbf{r}')/2$ of the electron-hole pair is retained in Eqs. (3) and they are expanded in Δ (**R**) and $\mathbf{P}_{12} \times \mathbf{k}$ near $T_{\rm Im}$, ¹⁶¹ then we obtain the following expression for the current after averaging over the unit cell:

$$\mathbf{j}(\mathbf{R}) = \frac{7\xi(3)n}{8(\pi T_{\rm Im})^2} [P_{12}\vec{\nabla}_{\mathbf{R}}^2 - \vec{\nabla}_{\mathbf{R}} (P\nabla_{\mathbf{R}})] \Delta(\mathbf{R}).$$
 (5)

Note that expression (5) satisfies the condition for the transverse current div $\mathbf{j} = 0$. In the two-band scheme div $\mathbf{j} \sim u_1^* u_2$ vanishes after integration over the unit cell because of the orthogonality condition (u_1 and u_2 are Bloch modulation factors of bands 1 and 2).

Without restricting ourselves to the finite number of bands, we can obtain the following expressions for div j:

$$\operatorname{div} \mathbf{i} = \frac{e}{i} \int V(\mathbf{r}, \mathbf{r}'') \rho(\mathbf{r}'', \mathbf{r}) d\mathbf{r}''' + \text{c.c.}$$
 (6)

where

$$V(\mathbf{r}, \mathbf{r}^{\prime\prime\prime}) = V(|\mathbf{r} - \mathbf{r}^{\prime\prime\prime}|) \rho(\mathbf{r}, \mathbf{r}^{\prime\prime\prime})$$

 $\rho(\mathbf{r},\mathbf{r}'')$ is the complete density matrix, which takes into account all the bands and $V(|\mathbf{r} - \mathbf{r}''|\mathbf{j})$ is the exchange-interaction potential. Using the Hermitian density matrix, we can see that the condition div $\mathbf{j} = 0$, allowing for all the bands, is fulfilled locally.

4. As seen in Eq. (5), the current in the ground (superdiamagnetic) state is non-vanishing if the minimum of the free energy corresponds to the inhomogeneous parameter $\Delta_{\rm Im}$. As is well known, the inhomogeneous state occurs when the Fermi surfaces of bands 1 and 2 are not completely congruent, regardless of the phase of the parameter Δ .⁽⁷⁾ The coefficient γ_1 of expansion of the free energy F with respect to the order parameter in the $\gamma_1(\partial\Delta/\partial \mathbf{R})^2$ term or the $\gamma_1q^2\Delta^2$ term changes its sign at a higher temperature than the coefficient α in the $\alpha\Delta^2$ term. A peculiarity of states with $\Delta_{\rm Im}$ is the anisotropy of the coefficient γ_1 . Note that the true order parameter in this case is $q\Delta$, rather than Δ , which, if we take into account expression (5) and the Maxwell equation curl $\mathbf{H} = 4\pi \mathbf{j}$, corresponds to ordering in the magnetic field \mathbf{H} .

The asymmetry of the single-particle spectrum indicated above, after substituting $-\mathbf{k}$ for \mathbf{k} in the case of homogeneous Δ_{Im} , leads to an inhomogeneous state even when the Fermi surfaces are totally congruent. In this case $q_{\mathrm{opt}}^2 \sim \Delta_{\mathrm{Im}}$, i.e., $j \sim \Delta_{\mathrm{Im}}^2$.

5. The assertion that the interband interactions specify the phase of the order parameter is valid only in the homogeneous case. Because an invariant of the type

$$P_{12}\Delta_{Im}(\Delta_{Re}\operatorname{grad}\Delta_{Im}-\Delta_{Im}\operatorname{grad}\Delta_{Re})$$
 (7)

exists in the free energy, the phase of the parameter Δ is a function of the coordinates. Such a state can be the ground state in the *n*-type ferroelectric materials⁽⁸⁾ in which the polarization is proportional to Δ_{Re} . The maximum current occurs in the region of the domain wall in which the phase passes smoothly through $\pi/2$.

It follows from the above discussion that the structure of the superdiamagnetic state is highly sensitive to the high-temperature symmetric phase.

The authors are sincerely grateful to V. L. Ginsburg, L. V. Keldysh, and D. A. Kirzhnits for useful discussions.

¹B. A. Volkov and Yu. V. Kopaev, Pis'ma Zh. Eksp. Teor, Fiz. 27, 10 (1978) [JETP Lett. 27, 7 (1978)].

²B. A. Volkov, Yu. V. Kopaev, and V. V. Tugushev, Pis'ma Zh. Eksp. Teor. Fiz. 27, 615 (1978) [JETP Lett. **27**, 582 (1978)].

³E. G. Batyev, Pis'ma Zh. Eksp. Teor. Fiz. 29, 381 (1979) [JETP Lett. 29, 345 (1979)]. ⁴P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

⁵L. P. Gor'kov and G.M. Eliashberg, Pis'ma Zh. Eksp. Teor. Fiz. 54, 612 (1968) [Sov. Phys. JETP 27, 328 (1968)1.⁶A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskiĭ, Metody kvantovoĭ teorii polya v statisticheskoĭ fizike (Methods of Quantum Field Theory in Statistical Physics), M., 1962.

⁷T. M. Rice, Phys. Rev. 28, 3619 (1970).

⁸V. F. Elesin and Yu. V. Kopaev, Pis'ma Zh. Eksp. Teor. Fiz. 24, 78 (1976) [JETP Lett. 24, 66 (1976)].