Stability of weak shock waves
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It is shown that a weak shock wave is unstable relative to transverse modulations.

PACS numbers: 47.40.Nm

1. Until now, the stability of shock waves was investigated in terms of ideal gas
dynamics. As is well known,""! explosions in this case are stable against transverse
perturbations. The question remains open, however, whether the shock waves with a
finite width wave front are stable. This problem is also of interest because it is directly
connected with strong acoustic turbulence. The two current approaches to this prob-
lem predict different types of turbulence spectra: €, ~k 2 and €, ~k 2.3

According to the first point of view, sound turbulence is an aggregate of weakly
interacting shock waves and its €, spectrum is determined primarily by explosions. An
alternative point of view attributes an important part to the interaction of waves prop-
agating at an angle of 6~ (v/c,)"? to each other (here v is the perturbation rate and c,
is the velocity of sound). This process leads to isotropization of the spectrum.

In this paper we show that weak shock waves are unstable relative to transverse
perturbations and that they have a maximum increment in the range of angles
O~ /c,)".

2. As is well known,™ one-dimensional propagation of small-amplitude sound
waves is described by Burgers equation
uy *uu, ~pu, =0,
where u is the coefficient of “‘viscosity.” This equation has a solution in the form of a
shock wave that propagates with a velocity v,

uo(x-—vt)zv[l-thz—-l-l—(x—'vt)] (1)

with a jump of 2v, and with a wave front / = 2u/v. Allowance for the weak transverse
modulation of such waves gives the equation

d ( c,

£ W, tUU, = pu,, == 5 Alu, )
which is analogous to the Kadomtsev—Petviashvili equation for multidimensional
waves in a weakly dispersive medium. We examine the stability of shock waves in

terms of this approximation.
Linearization Eq. (2) after a steady-state solution of Eq. (1), we obtain
0 Cs

?;[But +u du, +8uu,, ~pdu,, J=-

A.L Su.

Let us now go over to dimensionless arguments x — (x — vt) v/2u, t — t v*/4
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and introduce a new variable 1 = chxéu. For perturbations of the type ¥(x) gl

we have the following spectral problem for a third-order, non-self-adjoint operator L:

9 1 92 2
L = C — ——— — s —e—— - = 2 3
Y= chx [ T ot (1 E):I Y=ak?y, 3)

where a = 4c,u?/v’. At k = 0 this spectral problem reduces to determination of the
spectrum of the Schrddinger operator

- — + 1
(6

- - FE =)
x2 ch? Y

x

with a reflectionless potential. This operator has one discrete level E = 0 with an
eigenfunction ¥, = 1/ch x and a continuous spectrum £ =1+ p?>>0

1 3 elP"
-— —— chx —— .
Yp 1—ip Y 9% chx

Thus, the shock wave is stable against one-dimensional perturbations with k = 0.
Here, a perturbation of an infinitesimal shift u = du,/dx corresponds to a nondiscri-
minating stable eigenfunction #,. At small ak ? the stability of a shock wave is deter-
mined by the level shift £ = 0, which can be determined from the standard scheme of
the perturbation theory. For this purpose we represent ¢ in the form:

o

¥ = co(/’o + fcp¢PdP.

We also introduce the 7 functions of the conjugate problem (L + ¥ = 0), which
are connected with ¢ by the relations:
~ eip¥ 2ip

Vom=me o g T i Y

The equations for the ¢, and ¢, coeflicients follow directly from Eq. (3), like the
condition of orthogonality for the elgenfunctlons Yo and ¢ ,: pt

ak? % ~
—-E¢ =5 fcp<0| p>dp,

-0
P] [

ak ~ .
(p2+1—E)cp==-2—”—[co<p.|9>+fcp<?|p >dp’],
where the matrix elements

7 1

<Pl0> =< |p>* ==
Pl e 14ip ch(mp/2)

Hence, the correction for the level E =0 appears in the second-order perturbation
theory:
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(ak?)2 <0 | >[2 (ak?2)? 2
£ <0.lp P 7 @
47 pZ+1 P 4 c@)+ 6 <0. @

- D0

Thus, a weak shock wave is unstable against transverse modulations. It follows
from Eq. (4) that the increment of this instability increases with increasing & and
reaches a maximum in the region @k 2~ 1 or (k/)>~wv/c,. The maximum is proportion-
al to v*/u, i.e., it is of the order of the reversal time. Basically, the unstable perturba-
tions are localized at the wave front. Therefore, the development of this instability
produces a turbulent shock wave front.

In conclusion, the authors thank I.B. Khriplovich for a useful discussion.
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