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The phenomenological ¥ theory of superconductivity, which may be of interest in
describing superdiamagnets—a class of materials with strong diamagnetism but
differing from conventional superconductors—is generalized. The proposed
generalization, moreover, also involves superconductors.

PACS numbers: 75.20. — g, 74.20.De, 74.30.Ci

As is well known, under certain conditions superconductors can be considered
ideal diamagnets (magnetic susceptibility y;; = —1/47) and, moreover, can have a
resistance equal to zero. It is quite natural, however, to raise the question''! about the
possibility of the existence of solids having only one of these properties, specifically,
superdiamagnetism (susceptibility y = yiq = —1/47 or y ~yiq and g =1 +47y>0)
in the absence of metallic conductivity. Recently, this question became relevant in
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connection with the examination of models of materials with spontaneous currents™™"

which undergo a phase transition from the dielectric (semiconducting) state to the
superdiamagnetic state.

A key problem here is selection of the order parameter. Volkov et al.” used the
spontaneous current density j, which was introduced by Landau'® as a relevant pa-
rameter. But above the transition temperature 7. the material in this case should
behave like a London superconductor rather than a dielectric. Moreover, because of
the field equations j = (c/4x) rot H, and this as a minimum complicates the selection
of the density j as the order parameter. Volkov et al.”>' considered a certain value of the
momentum density p as the order parameter, but the macroscopic measurement of this
parameter and the general form of the free energy remain insufficiently clear. There-
fore, it is appropriate to focus attention on the large ‘“‘reserves” available in the de-
scription of the superconducting and superdiamagnetic systems by using the order
parameter—the complex macroscopic wave function V.

Let us write that expression for the density of the free energy which we shall use
here
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where the magnetic field strength (identified with the induction) is B = rot A and all
the coefficients generally may depend on the temperature 7.

If we assume that d = f =g = 0 and m* = const, b = const, and @ = a(T — T),
then we come to the ¥ theory of superconductivity, where the phase transition occurs
at T=T, (see Refs. 7 and 8, Sec. 45). For ordinary superconductors e* = 2e (e is the
electron charge) and it is convenient to assume that m* == 2m (m is the electron mass;
the choice of the constant m* is determined solely by normalization of ¥). Ate* =0
we come to the ¥ theory of superfluiditiy’'®" and its generalizations.

The new possibilities, which we shall examine here, are associated primarily with
the temperature dependence of the coefficient m*. For some phase transitions the
coefficient 1/m* with the gradient term is known to vanish (the so-called Lifshitz
point). Bearing in mind the establishment of conformity with the results of Volkov et
al.™ and Volkov et al.,”® we assume that

"’L*"H(T"'Tc),a=a(T-Tc);b-const>0, ¥))

i.e., we assume that m*, rather than 1/m*, vanishes.

Of course, we can also develop a more general scheme in which the m* and a
coefficients vanish at different temperature. Under conditions (2) and assuming that
the coeflicients d, f, and g have no singularities (say, they are constant, positive, and
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not anomalously large), at 7> 7., the equilibrium value of ¥ = 0. However, near T,
the fluctuations of W increase, which produces an anomalous diamagnetism. Repeat-
ing this deduction for ordinary superconductors (see Ref. 8, Sec. 49) gives the
susceptibility
* )2 |
N (e*)*kp T, ) 3
24V2nke (pa)V2(T - T,)

This result is in agreement with that of Volkov et al.,'”’ whereas in the superconductors
x~(T—T.)"

_ As usual, the equations for ¥ and A are obtained by varying the free energy
F= § FdV. For simplicity, we limit ourselves here to the special case when F =g = 0.
thus, we have equations (we use the gauge div A = 0):
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Below the transition point T (i.e., in the ordered phase), where m* <0 we cannot
assume that d = 0 and the solutions differ substantially from those corresponding to
ordinary superconductors. For orientation, we start with the superfluid system
(e* = 0) for which Eq. (4) has the form
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From Eq. (6) and analogous to the equation for ¥ * we obtain in the usual way the
equation of continuity for the density of the flowing liquid j,

~ ~ 1 1 .
divj, =0, j, = const| — +d#2 |V¥|? |(¥'yv ¥~ wyw" ). 7
]s s m*

Of course, this expression for j; is consistent with Eq. (5). We seek a solution in the
form

Y= pe!d , 7= const, = const. (8)

Substituting Eq. (8) in the expression for the free energy [i.e., in Eq. (1) with e¢* = 0]
and minimizing in 1 and q, we obtain (at 770 and q+#0)
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1/m* + di2g2q? 0. (10)

Equation (9) follows from both Egs. (6) and (8), but for the solution of Eq. (8)
div j,=0 and Eq. (10) must also be obtained in the prescribed manner. From Egs. (9)
and (10) we determine [using also Eq. (2)]:
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Note that for the solution of Egs. (8) and (11) the flow density j, = O [see Egs. (7) and
(8)]. Evidently as T'— T, the solutions of Eqs. (8) and (11) are unsuitable and we
probably cannot assume that f =g =0 in Eq. (1). For a superdiamagnet (i.e., at
e*+£0) the solution of Egs. (8) and (9) satisfies Eqs. (4) and (5) at A=0. Such a
solution can probably be used in a simply connected sample in the absence of the
external magnetic field. Substituting in Eq. (5) the solution of Eqs. (8) and (11) as the
zeroth approximation for ¥, we can see that superdiamagnetism generally holds. In
the simplest case when the q and A vectors are collinear and linearization of Eq. (5)
over A is possible, the current j, in (5) has the form
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Therefore, according to Eq. (5), we get an exponential attenuation of the field deep
into the material with a penetration depth § = [|m*|c*/4m(e*)*n,]', where in order to
conform with conventional superconductors we assumed that 7> = |W¥|?> = n,/2.

It is difficult to doubt that the use of expression (1) is justifiable in the extension
of the usual theory of superconductivity to the case when the coefficient m* depends
on temperature, where m* or 1/m* passes through zero {one more order parameter,
for example, magnetization M may have to be introduced in Eq. (1), if the supercon-
ductors in question are ferromagnetic; see for example, Refs. 11 and 12]. However, the
question of whether superdiamagnetic materials different from superconductors exist
cannot be answered on the phenomenological level, since the response of the system to
the electric field in Eq. (1) cannot be predetermined. One of the systems of interest in
this regard is a dielectric which goes directly to the superconducting state, rather than e
simply to the metallic state. As to the materials examined in Refs. 2, 4, and 5, it is not
clear whether they can be described in the way indicated above. In general, the prob-
lem of superdiamagnetism, which cannot be reduced to the usual superconductivity,
remains open. But, this situation, in our opinion, justifies a many-sided approach to
this problem, in particular, on the basis of the analysis of the phenomenological
possibilities.
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