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The quasiclassical excitation spectrum is calculated, using the periodic one-soliton
solutions of the Landau-Lifshits equation.

PACS numbers: 75.10.Jm

Among several completely integrable equations recently found and investigated,
an extremely interesting one from the viewpoint of physical applications is the Heisen-
berg nonlinear “spin string” (HNSS)—the continuous analog of the corresponding
spin chain—described by the equation:

§4 = obegbge o st -1, (M

An inverse, scattering method solution has been developed® for Eq. (1), and its reduc-
tion to a nonlinear Schrodinger equation has been carried out,” apparently indicating
its complete integrability. The authors of Ref. 3, using their method of integration with
respect to the spin variables, obtained the quasiclassical spectrum for the HNSS and
found that it is identical to Bethe’s exact quantum answer.*

Recently, Borovik® aroused interest in the Landau-Lifshits nonlinear spin string
(LLNSS), taking anisotropic effects into consideration:

¢ =.e2begbse L gsilebst; saga o (0))

(in this paper we consider only 3> 0). Borovik indicated the L-A pair for Eq. (2) and
found the special case of a one-soliton solution. In this paper we will calculate the
quasiclassical LLNSS spectrum, using the periodic solution of Eq. (2). It should be
‘noted that the Borovik solution is not the most general since it does not take account
of the Doppler variation of the spin precession frequency for v=£0.

Introducing spherical coordinates, we write:
5% =(cos ¢ sinf, sing sind, cos ) .
The system (2) is reduced to two equations:
(cos ), =»(sin20¢x)x , (3a)
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sinf¢, = Bcos fsind + 6, ~ ¢2 sinfcos 0. (3b)

For the one-soliton solution [# = 6 (x — vt )] Eqgs. (3) are easily integrated and the
general solution with correct boundary conditions is:

v2 x dx
bp=c¢, + (ez + —)t +vf )
4 1+ cosf(x —vt)
2(2 + B)
cosf =1 —:
72 i 2 2
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A solution in the form (4) was previously obtained in Ref. 6. Let us point out that
because of (3a) the quantity

Q3 =f (1'—:cos0)dx &)
does not depend on time and its forms, together with the Hamiltonian H, the set of
LLNSS integrals of the motion. Jevicky and Papanicoulaou® showed that for the
HNSS the result of a quasiclassical quantization can be interpreted as the replacement
Q; by the integer m, while preserving the classical relationship between energy and
momentum E = 8[1 — cos(P /2)]/Q;. The authors of Ref. 6 assumed that for 8 #0 one
can also set Q; = m and can relate E to P by classical expressions.

We will calculate explicitly the quasiclassical spectrum for the LLNSS and show
that the assumption® is valid only as #— 0. In the general case O depends on m in a
very complicated manner and it is impossible to ascribe to it the meaning it has in the
isotropic model, i.e., the number of magnons.

Following the method of Ref. 7, quantum field theories define as quasiclassical
the computation of the functional integrals near periodic solutions of the field equa-
tions, and the spectrum is found from the poles of the Green’s function

o0 . .
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G(E ) =i Ef dTe 217iAle . (6)
]
We have ignored the quantum corrections in (6); they do not exist at # = 0.> In our
case they can lead to a renormalization of 5 and are unimportant to us. We will impose
a periodicity condition on the one-soliton solution (4)

|
I
i

-

c 11, 2. . ©)

456 JETP Lett., Vol. 30, No. 8, 20 October 1979 Yu. N. Kafiev 456



Because of space limitations in this paper we ignore the motion of the center of mass,
i.e., we assume v =0 everywhere. For the physical quantities we then obtain [here

Qs = (V?/4)Q3]
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Eliminating €, we find the classical relationship between E and 0,
E o ayB| - el ©
=- -— t .
P shza3 ¢

Using the spin Lagrangian of Ref. 3, we find the action S,

1¢2 1¢2
T oo StS --S S‘t

S, = (dt [da|———o" _H
el { _{. 1+ 83
5 2 F2+2B+2\/,3(,8+525 1
= =T} ln + 4+ B) 2 ). (10)
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The quantity 4, in Eq. (6) corresponds to the freedom in the choice of the initial
conditions (@, in (4)) and is equal to A, = (1/1"%) 27"4/Q2m + Br)/*. After substitu-
tion of 4, and (10) into (6) and taking account of the periodicity conditions (7), we
compute the integral by the stationary phase method. A stationary point with respect
to 7 lies at 277/7, = E*/16 — p; in this case we obtain for G (E ) the geometrical series

e—zw

G(E) = const % exp(—ilw)f(E) = — f(E),

l=1 ].—:e"‘

where
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the form of f (£) is unimportant to us. Poles occur in G (E ) for w = 2mm; hence we find

-~
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Em =-4\/Ecth mz

. QY

As B — 0, the spectrum (11) is identical to the exact quantum answer at P = 41 for
the HNSS,®> E,, = 16/m and corresponds to the quantization of Q5. However, for B
different from zero it is seen from (9), (11) that Q, is bounded above and depends on m
in a complicated manner. It is obvious that the effect of anisotropy is not trivial and

for m\/ﬁ /4~1 the spectra are radically different: E,, ( f) ceases to depend on m.
Unfortunately, it is impossible to compare the spectrum (11) with the exact quantum
answer. It is easy to establish that the LLNSS is not the limit of any chain; the exact
quantum spectrum for it is unknown. The difference of the spectra, as well as the
symmetry properties for the Heisenberg and Landau-Lifshits “spin strings,” has an
adverse effect on the question® of the possibility of reducing one equation to the other.
Taking account of the center of mass motion is of considerable interest for the LLNSS;
since its equations, like the nonlinear Schrédinger equation and HNSS, are not Gali-
lean invariant, the dependence on momentum will be nontrivial. This question will be
considered in a separate paper. '
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