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Superfluid spin flux in the 4 phase of *He is possible only if the energy that holds
the spin vector d in the perpendicular plane to the magnetic field exceeds the
dipole-dipole energy. The effect of superfluid spin flux on the relaxation rate of the
longitudinal magnetization under different conditions at the boundary of the
investigated *He is disscussed.

PACS numbers: 67.50.Fi

A number of papers has been devoted to experimental and theoretical investiga-
tion of the relaxation process of the longitudinal magnetization in superfluid *He. The
relaxation occurs much more rapidly than in the normal phase, and frequently has an
unusual nonlinear character. Corruccini and Osherov'" observed for the first time a
linear decrease in the magnetization with time. They attributed this behavior to the
formation of large, critical, superfluid spin flux from the volume in which the magneti-
zation relaxation was studied. This relaxation mechanism was studied theoretically by
Vuorio.”” The present communication is devoted to a further analysis of this mecha-
nism. First we shall show that the superfluid spin transport can occur only in magnetic
fields exceeding a certain characteristic value determined by the equality of the dipole-
dipole energy and the interaction energy with the magnetic field.

We shall examine the relaxation of the spin magnetization along the constant
magnetic field H (z axis) in the 4 phase. If the spin vector d does not leave the x y
plane, then the state of the system is defined by a pair of canonically conjugate varia-
bles™": the spin density S, along the z axis and the rotation angle ¢ of the vector d in
the x y plane relative to the orbital vector 1, which is assumed to be fixed and lying in
the x y plane. The Hamiltonian equations have the form
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where S, is the deviation of the spin density from the equilibrium value yH /¥, 7 is the
gyromagnetic ratio, and y is the susceptibility. The expression for the spin current
j=A4ve~-DVS, ©)

includes a dissipative spin diffusion flux DVS,, in addition to the superfluid flux (spin
“superflux’) AV¢, which is determined by the rigidity of the order parameter A.

If the d vector lies in the plane, the spin superflux is dissipation-free, which is
attributed to the stability (metastability) of the helicoidal texture with nonvanishing
(V¢ ), i.e., spatial rotation of d in the x y plane. At small average gradients
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(Vo )<L ;' (L, =V A /G, is the size of the domain wall), the texture is a periodic
structure of d solitons,”’ which are 180-degree domain walls between the domains with
oppositely directed d vectors. However, the texture with nonvanishing (V¢ ) is not
topologically stable (Volovik and Mineev®®), if d can leave the plane. On the other
hand, if the x y plane is a “light plane,” so that the emergence of the d vector from it is
accompanied by an increase in the volume energy, then the destruction of the domain
walls (they must be destroyed in pairs) occurs by overcoming a certain energy activa-
tion barrier, which is determined by the energy of the “vortex” line along which the d
vector leaves the x y plane, and established perpendicular orientation to it; as a result
of rotating around it, the angle ¢ increases by 27. Such an activation barrier was
calculated in Ref. 6 for an analogous problem of stability of the helicoidal structure in
a light-plane antiferromagnet. In the 3He 4 phase the d vector is oriented by the
magnetic field in the x y “light plane” (the interaction energy is ~AyH 2, where 4y is
the difference of the susceptibilities in the transverse direction to d and along it), and
the dipole-dipole energy ~ G, plays the same role as the anisotropy energy in the light
plane of the antiferromagnet, which destroys the degeneracy of the angle ¢. Using the
results of Ref. 6, we may immediately obtain an expression for the activation barrier
(the vortex line is assumed to be a half-circle lying on the boundary of the system):
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Here 7. is the size of the core of the “vortex,” i.e., the distance from the vortex line on
which the “rigidity” energy 4 (V¢ )*~A /r- is of the same order as the interaction
energy with the magnetic field AyH>.

The activation barrier can reach large values if L, 37, i.e., if the field H exceeds
a certain value H, determined by the condition AyH?2 ~Gp, and is equal to 30 G,
according to Ref. 7. This conclusion is independent of the texture of the vector 1 and
agrees with the results of experiments,”® in which for fields of 30-85 G a transition was
observed from the Leggett-Takagi®'® volume mechanism for relaxation to a linear
relaxation law associated, according to Corruccini and Osherov,'" with the superfluid
spin transport.!’

We shall now examine how superfluid spin transport at H > H affects the process
of *He superfluid relaxation in a layer —d <x <d. The medium with a purely diffu-
sive spin propagation occupies the space |x| > d, but with a rather strong spin relax-
ation source (Corruccini and Osherov!!’ assumed that the paramagnetic impurities on
the walls are such a medium). Thus, Egs. (1) and (2) (we shall disregard the dipole-
dipole interaction and assume that the magnetization and spin flux are sufficiently
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large) should be solved with a boundary condition for the spin flux at x = + 4:

j=tv,S, v =yD/T, , )

where D' is the diffusion coefficient and 7, is the Block relaxation time in the region
|x]| >d. Solving this boundary problem in the limit v, — O, we can see that the magne-
tization dies away exponentially with relaxation time 7, = d /v,, irrespective of wheth-
er the spin transport in the region |x|<d is attributable to the diffusion or to the
superflux. However, the limits of applicability of this relaxation law are basically
different for the two cases. If the spin is transported by a superflux, then 7, =d /v, up

to the values of v, of the order of the spin waves y\/A /y . For a pure diffusion [4 =0
in Eqgs. (1)—(3)] this is valid only to v,<D /d, but at v,> D /d the solution of the problem
gives the relaxation time 7, = 4d */7>D, which can greatly exceed the time d /v,.

The so-called open geometry is often studied in experiments, in which the investi-
gated (volume) inside the current coil) is not separated from the remaining volume of
the superfluid *He, and a removal of the spin to a considerable distance without
absorption is assumed to be the relaxation mechanism. In this case, since the magnetic
field outside the coil decreases and, according to what was said above, the dissipation-
free transport of the spin by the superflux is impossible, the spin transport just outside
the range of the field of the coil becomes the “narrow place” of the relaxation process;
however, the superfluid transport of the spin inside the volume has little effect on the
relaxation rate. To illustrate this, we shall modify somewhat the problem of relaxation
discussed above. Let us assume that in the region |x|>d there is a pure diffusion
without absorption (7', — ), and the region |x| < d has an initial nonequilibrium spin
density S, and the spin transport to the boundary via the superflux is rapid, so that S,

as,

=const for |[x| <d and for x = + d there is a boundary condition d —a—z = j
t

Solving the diffusion problem in the region [x|>d with these boundary and initial

conditions, we obtain
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If, however, the spin is transported by diffusion in the region |x| <d, then: -
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Both expressions give S, =S, d /NaD't for large times ¢ >d */D".

To take into account the dissipation due to the vortices, a “frictional force” must
be introduced into Eq. (2). If we assume that this force is missing below a certain
critical value V¢ and then begins to increase rapidly, we immediately obtain the ob-
served linear spin relaxation law. A direct observation of the onset of “spin turbu-
lence,” i.e., a large number of vortices, in the neighborhood of which the vector d
leaves the “light plane” would confirm the existence of a large spin superflux during
its relaxation. The observed nonmonotonic spin relaxation’®'" is sometimes consid-
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ered as such confirmation. However, other explanations of this effect have also been

“suggested.!!”

DA strong dependence of the relaxation on H and the Liggett-Takagi relaxation at weak H were not
observed; however, in Ref. 8 in the so-called “horizontal geometry,” where the *He boundary layer was
oriented normal to the field H and oriented the vector 1 along H, eliminating thereby the violation of the
symmetry in relation to the rotation around H without which the Leggett-Takagi mechanism is sup-

pressed, was observed.
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