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A a quasi-one-dimensional model of a crystal, in which for specific states of the
charge carriers, two mechanisms of electron-phonon interaction weaken one
another, is examined. As a result, the system has an anomalously large
conductivity with an anomalous temperature dependence.

PACS numbers: 72.10.Dj, 71.38. 4 i

In this paper we consider the calculation of the electrical conductivity of a molec-
ular crystal by taking into account simultaneously two major mechanisms for interac-
tion of electrons with the lattice vibrations due to fluctuations resulting from intermo-
lecular vibrations of the resonmance integrals and the polarization energy of the
molecules surrounding the conduction electrons. We shall restrict ourselves to tem-
peratures exceeding the maximum temperature T of the phase transition.'” It is
known that above T there is a certain temperature range (sufficiently broad for a
weak coupling between the one-dimensional filaments) in which, to describe the prop-
erties of a quasi-one-dimensional system, we can assume that it is possible to consider
the filaments are uncoupled. Thus, we have a one-dimensional model of a crystal. In
addition, we shall assume that the impurity concentration is small enough so that
T n €7; (1; and 7, are the scattering times of an electron by impurities and phonons),
and the conductivity o can be determined from the kinetic equation.™

Using the band scheme in the strong coupling and nearest-neighbor approxima-
tions, we represent the matrix element of the electron-phonon interaction A4 (k, ¢) in
the form:

Ak, q) = 2io”(2NMo )% [y singa + sinka - sin(k-q, a )], %))

Here y = 2¢%a,/asw’, e is the electron charge, a is the lattice constant, a, and M are the
average polarizability and mass of the molecule, ¥ is the number of molecules in the
main region of the crystal, w and w', respectively, are the resonance integral between
the nearest neighbors and its derivative with respect to the intermolecular distance, k
and ¢ are the one-dimensional quasi momenta of the electron and phonon with the
energies €(k) = — 2w cos ka and w, = 2v,a ~' |sin ga/2|, and v, is the speed of sound.

Analogous Hamiltonian, written in the nodal representation, was used in Ref. 3 in
calculating the carrier mobility in anthracene. If the parameter ¥>1, then the first
mechanism of the electron-phonon interaction, which is associated with the fluctu-
ations of the polarization energy, is predominant in the Hamiltonian. An analogous
situation occurs, for example, in the case of small-radius polarons. If y<1, then the
second mechanism, which is associated with the fluctuations of the resonance inte-
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grals, is predominant. This case has been examined, for example, in Ref. 4, We shall
examine the case ¥~ 1. The interference effects between the two electron-phonon in-
teraction mechanisms mentioned above become important in the Hamiltonian. We
shall limit ourselves to intermediate temperatures in order to study the elastic scatter-
ing processes of electrons by phonons. It follows from the energy-conservation law
that ¢ = 2k is large. Moreover, as seen in Eq. (1), the probability of electron back
scattering is zero for values of k determined from the relation cos ka = — ¢ '. This
means that the electron waves corresponding to these states propagate without (or
nearly without) scattering. We examine a semiconductor with a p-band conductivity.
The conditions for occurrence of anomalies in the temperature dependence of o in this
case are much better as comparison with the s band, since the compensation for the
scattering mechanisms is for the states with a small k. We use the kinetic equation to
estimate 0. For a nondegenerate hole gas at intermediate temperatures (k,7>v,a "),
we obtain:

enMyv w? .

O o= 8 H1-y+y/plexp(=p) = (1+y+y/p)expp
ﬂ(koT)2y3w'2lo(p)
+ exp(p/y) 2 ~p(y® =~ 1) /y} Ei(=pu(1 + )/ y) = Ei(=p(1 =) /)1

2)
where n is the concentration of holes, Ei(x) is the integral exponential function,
m = 2w/kyT, and I(1) is the Bessel function of an imaginary argument. In the limiting
case of a broad conduction band and y<1, the usual temperature dependence
o~T ~* follows from Eq. (2). In the general, the dependence of ¢ on T is more
complex and varies significantly as ¥y — 1 (see Fig. 1). At [u(1 — 9)/7]«], it follows
from Eq. (2) that
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FIG. 1. Temperature dependence of
the electrical conductivity calculated
Jor - 3oy from Eq. (2) and reduced to its value
2 at room temperature: (a) w = 0.013
| eV; I, y=0.1, 2, y=0.5, 3,
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First, we see that in these materials we can expect anomalously large conductivities as
¥ — 1. Second, the temperature dependence of o, which is now close to T —*2, varies.

We shall further assume that ¥ varies with temperature only due to variation of
the lattice constant a as a result of thermal broadening of the crystal. In general, this
variation, which is attributable to the anharmonicity of the lattice vibrations, is small,
and we take it into account only in the expression (1 — ) under the logarithm in Eq.
(3), since because of it ¥y — 1. We have

y = v (1-58T), @

where ¥, is the value of ¥ at a temperature of absolute zero and f is the linear expan-
sion coefficient.

Suppose the value of 7 at room temperature (or higher) is < 1. As T decreases, the
value of y increases according to Eq. (4), and at some temperature 7'’ it reaches unity.
Thus, from Eq. (3) we obtain

4e2nu§Mw7/2 kT
& —— 1 ~-C-1/, &)
Vrw sy k. 1)572 | 10Bw(T - T7)
T2 =GBl -y, Q)
As seen in Eq. (5), o diverges logarithmically as 77— T
If the hole gas is degenerate, we obtain for o
ezvg‘Mwa2(4w - ‘F) 1
o= )

L L4 l’
nw’? a(513y°)2(2w - sF)2 k_oT(T - T")?

T = (58)" 111 - 2w /(y (2w = €5)) ], ®

where €, is the Fermi energy.

Taking into account the impurities or other crystals imperfections, we can see
that o is finite and reaches near T' or T a certain maximum which decreases with
increasing impurity concentration and may even be completely smeared out. It should
be noted, however, that in the immediate vicinity of the maximum the condition
T . €7; is violated, and a more rigorous treatment is required to calculate 0.2

Taking into account the weak coupling between the one-dimensional filaments
also limits the sharp increase of conductivity, and the strong coupling may completely
smear out the maximum of the conductivity. This problem will be examined
separately.

Finally, we note that such dependences with a sharp conductivity maximum were
indeed observed (see Ref. 4). However, since we do not know the specific values of all
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the parameters, we cannot verify the validity of this model. We note that if we assume
that a~4 A, the width of the conduction band 4 ~0.1 eV, and w’ ~2w A, then ¥
reaches unity at a,~ 1 A®, which is realistic for a,.
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