Anomalous photovoltaic effect in LiNbO₃:Fe in polarized light

V. M. Fradkin and R. M. Magomadov

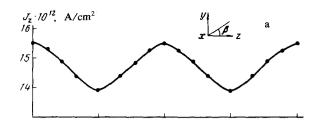
Institute of Crystallography, USSR Academy of Sciences

(Submitted 29 October 1979)

Pis'ma Zh. Eksp. Teor. Fiz. 30, No. 11, 723-726 (5 December 1979)

Dependence of the photovoltaic current in the ferroelectric LiNbO₃:Fe on the direction of light polarization is obtained for the first time, and the components of the photovoltaic tensor k_{ijk} are determined. The longitudinal, photorefractive effect is observed.

PACS numbers: 72.40. + w


The anomalous photovoltaic effect (AP effect) in crystals without the symmetry center is described by the tensor of third order $\alpha_{ijk}^{(1)}$

$$J_i = \alpha_{ijk} E_i E_k \,, \tag{1}$$

where J_i is the photovoltaic current, and E_j and E_k are projections of the light polarization vector (for linearly polarized light). The AP effect in ferroelectric materials was observed for the first time in Refs. 2 and 3 in LiNbO₃:Fe and in barium and strontium niobate crystals. The dependence of J_z on the light polarization (z is the direction of spontaneous polarization) in ferroelectric materials was not observed in Refs. 2 and 3 or in the subsequent work,¹⁴¹ and it was reported that $J_y = J_x = 0$. At the same time, the AP effect in a cubic piezoelectric Bi₁₂SiO₂₀ was observed only in the polarized light.¹⁵¹ In this paper, we report for the first time the dependence of the photovoltaic current on light polarization in LiNbO₃:Fe, and we determine all the components of the photovoltaic tensor.

The measurements performed using an iron-doped lithium niobate single crystal in the shape of a parallelepiped with the (001), (010) and (100) faces and the corresponding linear dimensions $0.5\times0.35\times0.1$ cm. The crystal was illuminated with a linearly polarized light at $\lambda=500$ nm, which corresponds to the edge of absorption band of Fe²⁺ in LiNbO₃:Fe.¹⁶¹ A xenon lamp and ZMR monochromator were used as a source of light. The method described earlier¹⁶¹ was used for measuring both the steady-state photovoltaic current J and the field induced by it $\widetilde{E}=J/\sigma$, where σ is the photoconductivity. All the measurements were conducted at a constant light intensity $I=2.3\times10^{-3}$ W/cm² at room temperature.

The photovoltaic current was measured both in the direction of spontaneous polarization (z axis) and in the x and y directions for all possible orientations of light polarization plane. Figures 1 a, b, and c show the experimental dependence of the photovoltaic current J_z , J_y , and J_x on the angle β between the light polarization plane and the corresponding crystal axis. Allowing for the nontrivial value of the α_{ijk} tensor component for the point group 3m to which lithium niobate belongs, we write the expressions, in accordance with Eq. (1), for the photovoltaic current J_z , J_y , and J_x

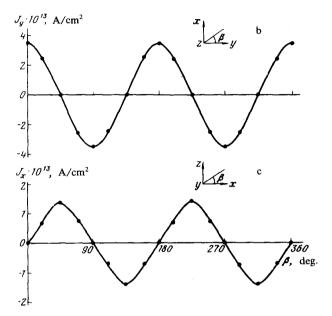


FIG. 1. Dependence of the photovoltaic currents $J_x(a)$, $J_y(b)$, and $J_x(c)$ on the orientation of the plane of the light polarization in LiNbO₃:Fe. The direction of light propagation is indicated in the insets.

(the direction of propagation of the linearly polarized light is shown in Figs. 1a, b and c, respectively).

$$I_{z} = a_{31}I + (a_{33} - a_{3})I\cos^{2}\beta, \qquad (2)$$

$$I_{\gamma} = \alpha_{22} I (1 - \sin^2 \beta), \tag{3}$$

$$J_{x} = a_{15} l \sin 2\beta, \tag{4}$$

where I is the intensity of light. A comparison of the experimental orientational dependences in Figs. 1 a, b, and c, respectively, with Eqs. (2), (3), and (4) shows a good agreement. Although the currents J_x and J_y have nonzero values only for the polarized light and change their signs twice when the polarization plane is rotated by 360°, the current in the direction of spontaneous polarization has a component that is independent of the direction of the polarization of light. This possibly accounts for the fact that the effect of light polarization on the photovoltaic current J_z has not been observed earlier. Two interesting cases are not shown in Fig. 1. If the light propagates along the x axis, then $J_x = 0$ for any value of β . When the light propagates along the z axis, the current $J_z = \alpha_{33}I$ is independent of the direction of light polarization. We note that the amplitudes of the currents J_y and J_x are smaller than J_z by more than an

order of magnitude. Therefore, the induced field \tilde{E}_y , \tilde{E}_x is by more than an order of magnitude lower than \tilde{E}_z and does not exceed 200 V/cm. However, these fields were sufficient to observe the longitudinal, photorefractive effect in the direction of the z axis, $\delta(\Delta n) \approx 10^{-6}$, which at the light intensity shown above was more than an order of magnitude lower than the transverse photorefractive effect (in the direction of the y axis) determined earlier. [6]

We determined from a comparison of the curves in Figs. 1 a, b, and c with Eqs. (2)–(4) the numerical values of α_{ijk} or the photovoltaic coefficients $k_{ijk} = 1/\alpha^* \alpha_{ijk}$, where α^* is the absorption coefficient (in LiNbO₃:Fe $\alpha^* \approx 4.5$ cm⁻¹ at $\lambda = 500$ nm; pleochroism can be disregarded). The following values were obtained: $k_{31} = 1.4 \times 10^{-9}$, $k_{33} \approx 1.5 \times 10^{-9}$, $k_{22} \approx 0.5 \times 10^{-10}$, and $k_{15} \approx 1.0 \times 10^{-11}$ A·cm/W. The values of k_{31} and k_{33} are close to the value of the photovoltaic coefficient obtained earlier for LiNbO₃:Fe in unpolarized light.⁽⁷⁾

¹V. I. Belinicher, V. K. Malinovskii and B. I. Sturman, Zh. Eksp. Teor. Fiz. 73, 692 (1977) [Sov. Phys. JETP 46, 362 (1977)].

²V. M. Fridkin, A. A. Grekov, P. V. Ionov, A. I. Rodin, E. A. Savchenko, and K. A. Verkhovskaya, Ferroelectrics 8, 433 (1974).

³A. M. Glass, D. van der Linde, and T. J. Negran, Appl. Phys. Lett. 25, 233 (1974).

⁴V. M. Fradkin and B. N. Popov, Usp. Fiz. Nauk 126, 657 (1978) [Sov. Phys. Usp. 21, 981 (1978)].

⁵M. P. Petrov and A. I. Grachev, Pis'ma Zh. Eksp. Teor. Fiz. 30, 18 (1979) [JETP Lett. 30, 15 (1979)].

⁶V. M. Fridkin, Fotosegnetoelektriki [Photoferroelectrics], M., Fizmatgiz, 1979.

⁷A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).