JTP07051 JTPLA,5JUL7,3,1

Effect of crystal lattice on the equilibrium shape
of electron-hole drops

B. M. Ashkinadze, A. V. Subashiev, and . M. Fishman

A. F. Ioffe Physicotechnical Institute, USSR Academy of Sciences
(Submitted February 6, 1977; resumbitted May 16, 1977)
Pis’ma Zh. Eksp. Teor. Fiz. 26, No. 1, 3-5 (5 July 1977)

The formation of electron-hole drops leads to an equilibrium deformation of the
crystal lattice. It is shown that as a result of the anisotropy of the elastic

properties of the crystal, drops of sufficiently large volume should be disk-

shaped.

PACS numbers: 71.35.+2z, 61.70.Yq

The influence of external deformation on the behavior of electron hole drops
(EHD) was investigated in a number of studies (see, e,g.,'"2), It will be
shown below that the very appearance of the drop is accompanied by an equili-
brium deformation of the crystal, so that the region of the crystal inside the
drop turns out to be elongated (in the case of silicon and germanium), and
slightly compressed outside the drop. The deformation, being small, does not
affect the volume properties of the EHD; in a number of phenomena governed
by surface tension, however, equilibrium deformation can exert a substantial
action on the drop.

To estimate the characteristic values of the deformation and of the pressure,
we consider a spherical drop placed in an isotropic elastic medium, The
energy density of a crystal eith and EHD, with allowance for the electron-
phonon interaction, can be written in the form

1
E=E +7Au2(r)_1)n(r)u(r), (1)

el
where E,; is the electron-hole contribution to the energy (with allowance for the
surface energy), A=(cq;+2¢49)/3, ¢4y and ¢y, are the elastic moduli, #(r) is the
strain, D is the summary deformation potential of the electrons and holes,

n(r) is the coordinate-dependent density of the electrons and holes (z(r) =z  at
Ir1<R, n(r)=0 at IrI>R, R is the radius of the drop).

The electron-phonon interaction produces elastic stresses o{r) = 8E/ du(r)
that lead to deformation of the medium, The determination of the equilibrium
deformation is analogous to the problem of the thermoelastic stresses produced
in a medium by a uniformly heated sphere, 31 The crystal region inside the drop
turns out to be uniformly stretched (the width of the forbidden band inside the
gap is smaller than on the outside) and the value of the strain is ug=Dny/r;
outside the drop, the relative change of the volume is equal to zero, but the
radial and tangential components of the stress do exist and decrease in propor-
tion to 1/#3, There is therefore a strain gradient near the surface and gives
rise to pressure on the drop. The force acting on a surface-layer element of
the drop, with area S and thickness d, is equal to F=DnSd grad u. Putting
grad u~uy/d, we obtain
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F  (Dn)? o

For germanium, substituting in (2) the values D~ 3 eV, A=10!2 dyn/cm?, and
n=2x101" ¢m=3, ™) we find that the additional pressure on the drop surface is
po~1 dyn/cm?, and the relative crystal deformation is u,~ 1076,

Let us compare p, with the pressure due to the surface tension p'=2a /Ry,
Putting o =2 x 10~ erg cm? we obtain that p’ <pgy at a drop radius Ry>4 pm,

The onset of deformation lowers the total energy of the drop; it follows from
(1] that for a drop of radius R~ 4 pum the energy decrease AE amounts to
~1 eV,

The elastic deformation of the medium in which the drops are located can
lead to a number of effects. Thus, for example, a) elastic forces that decrease
like 1/7% should act between the drops, in analogy with the forces acting be-
tween the dilatation centers in a cubic crystal®™3; b) in a cubic crystal the
anisotropy of the elastic properties should lead (for drops of sufficiently large
volume) to a stronger shape anisotropy. We shall dwell on this question in
somewhat greater detail.

The equilibrium shape of the drop in the crystal is determined by the mini-
mum of the total energy. In an anisotropic crystal, both the energy of the sur~
face tension and the exchange encrgy of the elastic deformation of the lattice
depend on the shape of the drop. The anisotropy of the elastic moduli causes
the minimum of the elastic energy to correspond to an equilibrium drop shape
in the form of a thin disk oriented along the easy compression axis (the [100]
axis in Ge and 8i), A similar “leveling” of other inclusions in cubic crystals
is described in detail in'®), The transformation of a small-volume drop into
a disk is hindered by the increase of its surface energy. The critical volume
at which the drop assumes abruptly the shape of a disk can be determined by
considering the change of the energy at small deviations of the shape of the
drop from spherical (i.e., by expanding the energy in capillary oscillations),
The most unstable are ellipsoidal deviations from spherical form (n=2),

The frequency of such oscillations vanishes at R,~ 3 pm. It turns out that in
this case a jump into a disk-shape state takes place, with §=d/I=~0.5 (d is
the drop thickness and I is its diameter).

The cubic deformation of the drop, which occurs at any volume and is pro-
portional to its mean radius, corresponds to capillary oscillations with »> 4,
It turns out to be relatively small (at R <R ) because of the high frequency of
these oscillations.

Wher the total volume of the drop is large enough, and consequently the drop
is disk-shaped, its elastic energy is equal, in the zeroth approximation in d/I,
to the energy of an infinitesimally thin plate.

For a disk of finite thickness, the elastic energy can therefore be represented
in the form of the energy of an infinitesimally thin plate and an edge contribu~
tion proportional to d/1.

With decreasing d/1, the edge elastic energy decreases and the surface
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energy increases; the equilibrium shape of a drop of volume V is consequently
determined by the balance of the surface energy and the elastic edge energy:
Dn)? d
__(_")__ Ve = lza . (3)
¢y + 2¢q,

Equation (3) takes into account the fact that the anisotropy of the elastic

moduli is large, so that the anisotropic part of the elastic energy is of the

same order as the elastic energy itself,

It follows from (3) that
d/U=(r,/R)* ,  where r, =a/Mul,

For example, a drop of radius 10 ym should turn into a disk with a ratio d/I
~1/4,

We note in conclusion that no spontaneous uniaxial deformation can set in as
a result of the splitting of the electron (hole) states, since a small splitting
does not lower the total energy of the drop.

The authors thank }f. I. Rashba for a valuable criticism of the initial draft
of the paper,
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