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A new and better founded formulation is presented of the scale-invariance
hypothesis for the calculation of the longitudinal conductivity of a quasi-one-
dimensional metal. Results that differ from the those previously obtained by the
authors (Sov. Phys. JETP 45, 118 (1977): Sov. Phys. Solid State 19, 33 (1977)
JETP Lett. 24, 433 (1976) are presented for a number of quasi-one-dimensional
problems. The advanced hypothesis can be directly verified in high-frequency
experiments.

PACS numbers: 72.10.Fk

We have previously“"‘” constructed a method of calculating the conductivity
of quasi~one-dimensional metallic system, and subsequently applied it to
concrete systems such as a quasi-one-dimensional metal with allowance for
hops between filaments, to a semimetal with extremely strong magnetic field,
and to a quasi-one-dimensional metal with magnetic impurities,

It is known that in a purely one-dimensional metal with random impurities
the electrons are localized. Analysis of quasi-one-dimensional systems shows
that in all cases it is possible to introduce a dimensionless ‘“delocalization
parameter” ¥, which determines the delocalizing influence of the non-one-di-
mensionality of the system or the inelasticity of the collisions (with phonons or
magnetic impurities), If y> 1, then the kinetic equation is applicable, If y <1,
then the influence of the localization effect is very strong, and the conductivity
is small, It turns out then that the conductivity is not an analytic function of
v asy—0, and can therefore not be determined by expansion in y. Since the
complete solution of the problem is in most cases complicated, we go around
this difficulty in>=* with the aid of the similarity hypothesis,

Namely, we took a finite sample of length L and found the first correction
to the conductivity in v. At small v, the conductivity of such a sample is ana-
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lytic, We then advanced the hypothesis that in the general case similarity holds
true, and the conductivity o is given by

o = Aqf(y/q"), (1)

where A=const, g=exp(=L/4l,), I, is the mean free path with scattering
bo— =Dy, f0) =1, flx =~ =) <x!/¥, 1t could therefore be concluded that ogocyl/v
as L —«, The degree v was determined from the expansion of ¢ in v for ¢ # 0,

This procedure is in fact doubtful, since a limitation of the electron correla-
tions arises in a quasi-one-dimensional objects at v = 0 for finite scattering,
so that the interchange of the limits L — <« and y —0 is not a neutral procedure,
Furthermore, a very suspicious circumstance is the fact that none of the expan-
sions in vy obtained inl>~*1 are strictly speaking in a scaling form,

In view of the foregoing we shall use a new procedure, which we regard as
better founded. We calculate the static conductivity as the limit lim . q0{w).
For the conductivity o{w) we have a formula of the type (see?)
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At o # 0 the coefficients of the expansion of ¢ in vy are finite, i,e, olw) is

analytic iny at small v, In the zeroth order in vy we get (see

~ 843) e’llo
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Here S is the area of the crystal cell in the (xy) plane, I, is the free path for
backward scattering by the impurities (py——p. The expansion in v depends
on the particular problem, but in all cases only powers of w appear, i.e,, the
expansion is of the “scaling” type, Consequently, we propose in lieu of (1)

]

where f has the same properties as before,

The results for the longitudinal conductivity, which are obtained in this case,
differ from those obtained in?*~*3), We cite them without proof:

a) The longitudinal conductivity of a quasi-one-dimensional metal (cf, {2},
In this case v=1,

o~ (e2/nS )(a?12/v? )L w171 )L, (5)

b) The longitudinal conductivity of a semimetal in a very strong magnetic
field, for Coulomb impurities {cf, ®). In this case v=2,

b 6 2
Sl gry A Sl ©
= —_———— = n
’ (272)? (yo) ) Nimzzzez 2p A ’

i.e., at ny=const, py~nAlxcH! and o H-E,

c) Conduitivity of quasi~one~dimensional metal with magnetic impurities
(v=2), cf, 4]
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this means that ¢ is proportional to the concentration N,, of the magnetic atoms,
Formulas (6,7) and (6.8) of™? for the function o(H) remain in force., We note
that relation (6, 8) was confirmed by experiment(5) at pH «< T,

An additional argument in favor of the new scaling hypothesis is the fact that
in model (a) the conductivity could be calculated exactly. The result agrees
in order of magnitude with formula (5). The coefficient is equal to 46&(3).

Formula (4) can be verified in high-frequency experiments, It can also be
written in the form

a=a(0)¢<c.o—l-2 /yl/") ’ (4")
iv

which is more convenient at low frequencies. Here o(0) ~y!/Yoy(iv/wl,). The
coefficients of the expansion of ¢ in (=iw) are finite, It follows therefore that
in first-order approximation Imo{w) does not depend on y and differs from gy
in (?3 only by a numerical factor, Formula (3) yields Imo{w) at 1 > wly/v
>y,
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