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The scale time for a tunneling transition between two stable states of the motion of
a free electron with a low energy at cyclotron resonance is derived.

In a remarkable recent experiment,' Gabrielse e al. have observed the first case
of a bistability and a hysteresis at the cyclotron resonance of a single free electron. This
effect, which is characteristic of a nonlinear oscillator, stems from the relativistic
correction to the mass of the electron, which was negligible under the experimental
conditions: 1077-107" (the excitation energy was ~0.1-10 eV). The corresponding
shift of the cyclotron frequency, however, was much greater than the linewidth (y/
27 = 0.5 Hz), which was determined entirely by radiative decay. The nonlinear phe-
nomena observed at the cyclotron resonance of free electrons with low energies had
been predicted earlier.?”

The experimental technique of Gabrielse ef al.' provides a unique opportunity for
observing tunneling between two states of the cyclotron motion of an electron in a
region of bistability. We studied such transitions for an anharmonic oscillator in Ref.
4, where we showed that an oscillation state with a low amplitude is metastable, and
we calculated the transition probability. In the present letter we apply the results of
Ref. 4 to the case of the cyclotron resonance of a free electron, and we derive the scale
time (7) for tunneling from a state with a low amplitude to one with a high amplitude.
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The Hamiltonian of an electron in a static magnetic field B and in an electric field
of amplitude E which is rotating at a frequency « can be written as follows, where we
are making the first relativistic correction:
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+ eE(xcoswt + ysinwt), (hH

where e, m, and ¢ are the magnitude of the charge of the electron, its mass, and the
velocity of light, respectively; and 4, = — By/2, A, = Bx/2, A, =0. We will not
consider the motion along the magnetic field in the discussion below.

We transform to a rotating coordinate system by means of the equations

x = Xcoswt ~ YVsinwi, y = Xsinwt + Ycoswy (2)
and we then make the canonical transformation

X = (m) g + q2) P = (mQ)(ps + p2)I2,

(3)
Y= m9 - ), P, = Vi - @2

Here Q = eB /mc is the cyclotron frequency, and P, and P, are the momenta which
are the canonical conjugates of the coordinates X and Y. After these transformations,
Hamiltonian (1) becomes H = H, + H,, where
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Here 8 = 0%/2mc? and f= eE(mQ) /2. Expression (4) is the same as that for the
effective Hamiltonian for an anharmonic oscillator driven by a periodic external
force.* The Hamiltonian H,, which describes the motion of the center of the Larmour
circle with respect to the rotating coordinate system, is unimportant to the discussion
below. In contrast with the case of a one-dimensional anharmonic oscillator, in which
the switch to effective Hamiltonian (4) requires discarding nonresonant oscillatory
terms, the transition from (1) to (4), (5) is exact in the present case.

If the friction is small, the steady-state values of the amplitude ¢, are determined
by the conditions p, = 0, dH,/dg, = Q. In this case, the energy of the cyclotron motion
is € = g3 /2. We write it as € = nfi{), where n is the index of the Landau level (we are
assuming 72> 1). We then find an ordinary cubic equation for », which describes the
steady-state oscillations of an anharmonic oscillator:

4
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FIG. 1. Hysteresis in the dependence of the
energy of the cyclotron motion on the di-
mensionless deviation from the resonant

frequency.
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There is a bistability if 6 > 1 (Fig. 1). The parameter n, is equal to the jump in n
at the point at which the low-amplitude oscillations are cut off.

According 1o the results of Ref. 4, the scale time () for a tunneling from one
oscillation state to another (Fig. 1) is given in the semiclassical approximation by the
expression 7~exp{2(Q} —w) J(a)/AB], where J(a) is a dimensionless function of
the parameter o = fB /*(Q — o) ~*/?, which is given explicitly in Ref. 4. The coeffi-
cient of the exponential function in the expression for 7 is not known. Within this
factor, we have

Qr
lni;— = nol(8), I®) = 48J(0) . 9

2/3

The parameters 6 and « are related by 36 = (2/a)”'°. Asymptotic expressions for the
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FIG. 2. Scale time for a funneling as a
function of the dimensionless deviation
from the resonant frequency. 1-—nu-
sk merical calculation; 2—according to
2 expression  (10); 3—according to
expression (11).
J
0 ] 1 ]
! 16 2 286

86 JETP Lett., Vol. 44, No. 2, 25 July 1986 A. P. Dmitriev and M. |. D’yakonov 86



function I(5) follow from the corresponding expressions derived for J(a) in Ref. 4:

16+/3
I¢) = ——5—\—/ §(-1)"46 -1 <1, (10)
35
1) = 65[1:1(7”3)— 1], 5> 1. (1D

Expressions (9)—(11) constitute the basic result of the present study. Figure 2 shows
the tunneling time 7 as a function of the dimensionless deviation from the resonant
frequency, &, found from expression (9) by numerical calculations. We see that
asymptotic expression (11) gives a good description of the exact function I(8) for
values of § down to those approaching unity.

For a given value of the parameter 7, the tunneling occurs most effectively near
the point of the cutoff of the low-amplitude oscillations (5 = 1). The possibility of
observing the transition is limited on the one hand by the uncertainty (Ae€) in the
measurement of the excitation energy (in the experiments of Ref. 1, this uncertainty
was Ae = 16 meV, corresponding to An = 24) and, on the other, by the stability of the
frequency of the driving alternating field.

To estimate 7 we set n, = 35,8 = 1.2, and 1/27 = 1.6 x 10'! Hz; we find 7~ 10s.
Under these conditions the change in the excitation energy at the transition corre-
sponds to An=>50, and the necessary frequency stability is 100 Hz/s. At the value
chosen for n,, the time 7 increases very sharply with increasing 6 (with § = 1.25, for
example, we have 7~ 10° s). If the energy uncertainty Ae can be reduced, the value of
n, can also be reduced, and the frequency range in which tunneling transitions can be
observed will become much broader.

We also note that the tunneling is effective when the corresponding levels of
Hamiltonian (4) agree (within the radiative broadening). This circumstance may lead
to oscillations of the tunneling time as a function of the parameter 8. It is not difficult
to show that the period of these oscillations in & is (2r,) ~'.
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