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A method is proposed for a direct experimental observation of the dragging of
phonons by an electric current in a metal.
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It is known that at low temperatures the mean free path in typical metals is
determined by the electron-phonon collisions. The corresponding mean free
path is I, T-! and therefore remains exceedingly small down to helium tem-
peratures. As a rough estimate we can assume [,(T)=14(0)®/T, where ! (0)
~1075~10-% cm is the electron mean free path relative to scattering by phonons,
taken at the Debye temperature®. On the other hand, phonon scattering by
microscopic defects of the crystal lattice (including isotopes) is proportional to
the Rayleigh factor (7/@)? and is therefore not very effective at low tempera-
tures. Therefore, in samples that are not too dirty, the phonons are almost
completely dragged by the electrons at low temperatures.

In this paper we discuss the following possibility of experimentally observing
the phonon dragging effect. We consider two metallic plates M and M, sep-
arated by a thin dielectric layer. It is assumed that this layer is impermeable
to the electrons but at the same time lets the phonon pass freely. Let a po-
tential difference be applied to the plate M’ and let a current flow. Then a
dragging emf, due to the phonon pressure on the electrons, is produced in the
plate M.

We consider first the case of “dirty” samples, whose resistivity in the bulky
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state is determined by electron scattering by crystal-lattice defects: 7; <1,
where [ (T) o= T-% is the electron-phonon scattering transport length and I; is
the length of scattering by defects. It is obvious that under these conditions the
electron system in the plate M is much closer to equilibrium than the phonon
system, so that in the calculation of the nonequilibrium increment to the dis-
tribution function of the phonons the electrons can be regarded as being in
equilibrium. (A measure of the disequilibrium of the electron or phonon sys-
tem can be the velocity of the reference frame in which the total momentum of
the quasiparticles is equal to zero.)

We write down the system of kinetic equations for the nonequilibrium incre-
ment to the distribution functions of the phonons ¥(z,q) and of the electrons
x(z,p) in the plate M:
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The z axis is perpendicular here to the plate boundary, jzj) is the integral of the
collisions of the electrons with the nonequilibrium phonons. We have left out of
the collision terms those terms which are proportional to the function ¥ and cor-
respond to scattering of phonons by nonequilibrium electrons and of electrons

by equilibrium phonons.
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The function x satisfies the conditions of diffuse scattering of the electrons by
the boundaries of the plate M. The boundary conditions for the function ¥ can
be assumed to be®: ¥(z=0,s,>0)=—~uq,, ¥z=d, s,<0)=0, where d is the thick-
ness of the plate M, and the drift velocity » is connected with the current den-
sity j' and the intensity of the electric field E’ in the plate M': j' =0’ E' =n’eu,
o’ =n’e®3l’. Here I’ is the transport mean free path of the electrons in the

plate M’ ; the prime labels quantities pertaining to this plate.

Leaving out the calculations, we present the result for the total current flow-
ing through the plate cross section, referred to the plate width:
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This result is valid under conditions when the resistance of the external circuit
is small in comparison with the resistance of the plate M. In the opposite
limiting case, the total current through the plate cross section is equal to zero
and an electric polarization field is produced, with an intensity
perr(25) L (1)
n* I L (3)
The foregoing results have a simple physical meaning, We introduce the ef-

fective electric field E4y which corresponds to the force of the phonon pres-
sure on the equilibrium electrons at the boundary of the dielectric layer:
eE = p Ful;},. This expression can be easily obtained by calculating the mo-
mentum transferred to the nonequilibrium phonons by the electrons. (It must
be recognized here that the phonon pressure force acts only on the electrons
in the region where the Fermi distribution is smeared out, whereas the field
E 44 acts on all the electrons,
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We consider first the case of a sufficiently bulky plate. Let, for example,
d>1;>1,. In this case the field Eq; acts in a layer of thickness [, and the
electric current flows in a thicker layer of thickness /;. Since [, plays in this
case the role of the electron mean free path, the total current can be estimated
at JeneP3lEqel;, which coincides with the factor preceding the brackets in
(2). In the estimate of the polarization field E it is necessary to take into ac-
count the fact that a “countercurrent” flows through the major part of the plate
cross section and cancels out the current J. From the current-cancelation con-
dition: né?p3il,Ed=J follows expression (3) at d>1I,. In the case of a sufficiently
thin plate (d < ,,l;), obviously, the total current is J~ne p dEq44ed, and the
field is E~ Eg4, in full agreement with formulas (2) and (3).

The foregoing analysis is based essentially on the assumption that the elec-
trons in the plate M are much closer fo the equilibrium state than the phonons
passing through the dielectric interlayer. As shown by a detailed analysis,
this assumption is valid not only in “dirty” samples (I, >1;), but also in the
general case, at any ratio of /; and [,. The point is that when an electric cur-
rent is produced under the influence of the phonon-pressure force, the effective
electron mean free path is 7,4s<<1,. This is clear from the qualitative reasoning
advanced above: [, coincides with the smaller of the lengths I,,7;, and d,
whereas I}~ (T/ @)4<< 1. Therefore formulas (2) and (3), following the sub-
stitution l’1—>l'1 +13}, are valid in order of magnitude at any ratio of the prob-
abilities of the electron-phonon and electron-impurity scattering. We note that
the obtained formulas make it possible to determine directly the phonon mean
free path in metals—from the character of the temperature dependence and,
in particular, from the dependence of the emf on the plate thickness [see (3)].
This effect can depend qualitatively on the character of the electron spectrum.
Thus, if electron conduction predominates in one of the plates and hole con-
duction in the other, then the directions of the currents (and the signs of the
emf) will be reversed. In metals with open Fermi surfaces, the directions of
the currents can depend on the orientation of the crystal axis relative to the
surface of the plate and of the electric field.

The authors are most indebted to the late S. S. Shalyt for a useful discussion
of the question considered in this paper.

Dyrormulas (2) and (3) are of the correct order of magnitude of the probability
of the passage of a phonon through the dielectric interlayer is not small com-
pared with unity. On the other hand, the assumption that the phonons are dif-
fusely scattered by the other plate boundary is not essential, for specular
reflection leads only to a change of the numerical coefficients (which are of the
order of unity) in these formulas.
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