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The question of the distribution (on account of natural fluctuations) of the
average energy of a physical, chemical, or biological self-oscillating system is of
fundamental significance. In particular, the line width determines the sensitivity
limit of many instruments.

PACS numbers: 05.40.+j

The calculation of the spectrum of self-oscillating systems has been the sub-
ject of an extensive literature (see, e.g. ,'=3), Owing to the nonlinearity of the
initial Langevin equations, this problem is solved approximately, In the cal-
culation one can introduce two time-dependent parameters 7, and 7,=1/D,,.
The first (7,) determines the relaxation time of the amplitude A, while the
second (7,) determines the relaxation time of the phase. D, is the diffusion
coefficient of the phase. In the advanced-generation regime we have 7,> 7,,
so that we can introduce a small parameter €= TA/Tq,.

In the zeroth approximation in € (without allowance for the amplitude fluctua-
tions), the spectrum is a Lorentz line with half-width Aw=D,, and consequently
the line width is completely determined by the phase diffusion Dy. In first-
order approximation in €, the spectrum consists of a sum of two Lorentz lines,
one narrow and one broad (pedestal). The half-width of the narrow line is now
Dy(1+%€) 2 D,, and that of the broad one is 4D,/€> D,.

When account is taken of higher approximations in ¢e=171 A/ T » accumulation of
the contributions of the amplitude fluctuations becomes possible, and the prob-
lem arises of determining the resultant width of the spectral line.

It is shown in the present paper that the effect of accumulation of the con-
tributions of the amplitude fluctuations makes the width of the resultant Lorentz
line in the advanced-generation regime equal to 2D, and not D,, and con-
sequently the phase diffusion does not determine the line width completely.

This changes our notions concerning the factors that govern the line width of
the spectrum of self-oscillating systems.

In place of the Langevin equations for the amplitude and phase, =31 we start
from the equations for the equal-time correlation

<E(r)>= X <ca(t)A(ti=r)coslp(t)=d(t-1)1> (1)
2

and the average energy (E). At 7=0 the function (1) is equal to (E), so that the
function E is the distribution of the average energy over the spectrum and

E)=(1/2m[<E d,.

From the Fokker-Planck equation for the two-time distribution function at
cubic nonlinearity we obtain the equations for the function (1)
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1
d_<E(r)>+ 5 <y nB)E(7)> =0, )
N
We need also an equation for the mean values of the energy F and the amplitude
A, They also follow from the Fokker-Planck equation and assume in the sta-
tionary state the form

<(y+nE)E> =D, <(y+nd2/ 2> =D<3/A> . (3)

D is the intensity of the Raman source in the Langevin equations. In the case of
action of thermal noise D=vykT.

Equations (2) and (3) are not closed, inasmuch as they contain, owing to the
nonlinearity of the initial Langevin equations, not only the first but also higher
moments., For a linear harmonic oscillator, when n=0 and v >0, it follows
from (2) and (3) that the line half-width is Aw=v/2 and the average energy is
E)=D/y=FkT.

To calculate the spectrum of a self-oscillating system it is necessary, in the
considered approach, to solve approximately a system of nonlinear equations for
the moments. We obtain here the sought line width on the basis of the following
reasoning.

We represent the function (1) in the form
<E(r)> = 3<E>; e~ - S <E>, e = <E> 7N, (4
1 i

This is possible if the spectrum is represented as a sum of Lorentz lines with
half-widths (Aw); =A;. From (2) and (4) we obtain an equation for A:

A= <(y+nE)E(r)> M, (5)

2<E>
The right-hand side of this equation is independent of 7 if

<(y+qE)E(r)> = Be™, (6)

The constant B is to be determined. We obtain it for two limiting cases. The
first corresponds to the zeroth approximation in €, i.e., to total neglect of
the amplitude fluctuations. In this case we can make the substitution A(f —7)

— {A) under the () sign in (5), i.e., we can neglect the correlation of the
factor A(t — 1) with the remaining factors, It is necessary here to retain in (4)
only one term with the smallest A;, and the initial term in (6) should be chosen
to be the moment after the attenuation of the fast fluctuations. From (6) and
{3) we get in this approximation

2
B=< A9y g> <4>_ 1 pel S ys-_1 p.
(y+2%7/2) = D<o > (7

We have used here the second equation of (3) and the condition for the developed
generation (64 < {)). From (5)—(7) we get

W), =(Ao), =2 =L _-p s -1¥I_ | @)

In the second limiting case we take into account in (4) all the terms of the series,
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which corresponds to taking account of the total correlation of the factor
A(t— 1) with the remaining factors in (5) and (6). The constant B in (6) is then
equal to the left-hand side of (6) at 7=0, i.e.,

B=<{y+nE)E> =D, A= Aw=

= 2(A’u)° . (9)
x<E>,

We have here the first equation of (3).

We note that we can write for (Aw); and Aw formulas that are valid for any
excess above the threshold
D 1 D

A = e e D> , A = —,

(Ae), 2< 4> A ® 2<E> (10)
From this we get in the advanced generation regime Aw=2(Aw),, and in the
equilibrium state (n=0, y >0) (Aw),=Aw, since in this case (4) (4°1) = E).
Thus, the two curves merge as equilibrium is approached.
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