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A standing Langmuir wave (or an infinite chain of synchronous standing solitons
in the one-dimensional case) is stable and can be continuously fed by an electron
beam. The interaction produces humps on the beam velocity distribution function.

PACS numbers: 52.35.—g, 52.40.Mj

It is known!1™31 that in the one-dimensional case Langmuir waves break up
into clusters (condensates). In the course of time these clusters go over into 2
quasistationary state and form solitons. The interaction of solitons with plasma
particles was considered in®-%!, It was shown that the motion of Langmuir
solitons is made difficult by the strong deceleration by the plasma particles.

In real situations the solitons can therefore be regarded as standing, It is

also known!®1 that in the one-dimensional case an isolated standing soliton is
always attenuated when it interacts with a beam, and the beam distribution
becomes monotonically smeared out in accordance with the quasilinear theory.
It might seem therefore that in plasma-beam experiments with weak instability
the solitons cannot exist. Lavrovskif et al., '®) however, who investigated the
interaction of an electron beam with a plasma in a strong magnetic field (w),

< Wigr Wpe™ 10? sec~1), have observed a high level of Langmuir noise, and the
spectrum of this noise, plotted over times on the order of several nanoseconds,
had a line structure. They also measured the beam distribution function in
short time intervals (~ 10~7 se¢). The measurements have shown that the inter-
action with the plasma causes the beam distribution function to spread out
greatly and to acquire several strongly pronounced humps, thus contradicting
the conclusions of the quasilinear theory.

We shall show that the effects noted infé] can be explained by assuming that
the interaction of the plasma with the beam produces a standing Langmuir
wave or a chain of solitons that are correlated in phase. In the presence of
correlation, the beam energy is transferred to the one-dimensional solitons
even if they are standing. The presence of correlation produces also humps on
the distribution functions. These effects can also be attributed to a buildup of
a traveling monochromatic wave, {781 but such a wave is unstable to self-
modulation, [1:21

If the velocity of a packet of Langmuir waves is much less than the velocity
¢, of the ion sound, then the packet is described by the equation!?=%}
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Here E exp(=~iwpt) is the electric field in the plasma, w,, is the Langmuir
frequency, and 7p,=vp,/w,,. This equation is fully integrable and has a nonde-
numerable set of integrals of motion. {?! The stationary solutions of (1) are
therefore stable to small perturbation, just as the solution of the Korteweg—de
Vries in the form of periodic wave is stable. (101 The only stationary solution
that does not experience deceleration by the plasma particles is a solution in
the form of a standing wave

V6k T . 1
E(x,t) =---°-e—F(x)e“Q‘, k= —--e-E((l). (2)
] vé 7;
Here Q=~ %k%rzmwm, F(x) is a periodic function satisfying the equation
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where L is the wavelength {period). In the limit of an infinite wavelength L,
the Fourier series (3) goes over into a Fourier integral, F— cosh-!(Kx/2),
and (2) turns into a standing soliton with a characteristic width &j!. Replacing
F in (2) by its expansion (3), we represent the standing wave in the form of a
set of traveling waves with phase velocities L(wp,+Q)/2m, where n=0, + 1, + 2,
... . If the plasma contains a beam with characteristic velocity vg, then it
suffices to confine oneself in the equation for the beam distribution function f
to the contribution of only the nth wave of this set, with a phase velocity close
to vp: L(wpe+R)/2m ~ vy, We then have
—(?i- +v-a—f—+:‘ anin(knx—wt)i—-—=0. (4)
ot dx m dv
Here w=wy,+Q and k,=2mn/L. This equation can be easily integrated over the
trajectories. [":8! As a result we find that strongly pronounced humps appear
on the initially smooth distribution function f in the course of time, as is
indeed observed in experiment.

According to!™8!, if the distribution function at the resonance point has a pos-
itive derivative with respect to velocity, then the beam energy is transferred
to the resonant harmonic. Since all harmonics in a nonlinear standing wave
and in a soliton are interrelated, 31 an increase in the energy of one harmonic
leads to an increase of the energies of all others. In contrast to an isolated
solition, a chain of correlated solitons will therefore have an increment in
the presence of a beam,

It is known!"+81 that if the growth rate of the beam instability is equal to
Yy then the amplitude of the monochromatic wave increases to a value on the
order of B, ~ (m/e)y: k;!. Then the amplitude stops growing because of the
distortion of f in thek’fegion of resonant velocities. If the spread Avg of the
beam velocities is smaller than the amplitude of the particle-velocity oscilla~
tions in the wave field, i.e., if the inequality Avg <y%/kw is satisfied, then
the resonant distortion of the function f is of the order of f itself and this case
is easiest fo observe in experiment. If Avg is not the small, then the distor-
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tion is Af~ ty/E)(9f/dv) <f. A situation is then possible in which the beam inter-
acts with several standing-wave harmonics with different velocities.

The formation of humps on the beam distribution function on passing through
Langmuir turbulence was observed in'!1), where the distortion was attributed
to interaction of the beam with a set of entirely independent solitons or
collapses. The authors have arrived at this incorrect explanation because they
approximated the shape of the soliton by a rectangle, with an ensuing inadmis-
sible alteration of the soliton Fourier spectrum obtained inf3l,

Nonmonotonic distortion of the beam distribution function in the resonance
region may also be caused by formation of a set of synchronous three-dimen~
sional Langmuir!2! or cyclotron!®! solitons.
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