Study of the relative scale invariance in the reaction $\pi^- + \rho \rightarrow \Lambda + x$ (Λ forward)

B. M. Abramov, I. A. Dukhovskoi, V. V. Kishkurno,

A. P. Krutenkova, V. V. Kulikov, M. A. Matsyuk, I. A. Radkevich,

E. N. Turdakina, and V. S. Fedorets

Institute of Theoretical and Experimental Physics (Submitted July 30, 1977)

Pis'ma Zh. Eksp. Teor. Fiz. 26, No. 5, 403-408 (5 September 1977)

We measured the cross section of the reaction $\pi^-p \to \Lambda K^0$ and the ratio of the cross sections $\gamma = d\sigma/du|_{u_{\max}}(\pi^-p \to \Lambda K^0)/d^2\sigma/dudM_{x|u=u_{\max}}^2(\pi^-p \to \Lambda X)$ $(M_x^2 = 0.45 - 0.70 \text{ GeV}^2)$ at momenta $p_0 = 2.13$, 2.69, and 3.25 GeV/c. This ratio depends little on p_0 in the interval from 2.13 to 8 GeV/c (calculated from the data of Foley et al., Phys. Rev. 10D, 2763, 1974). This points to the existence of a relative scale invariance in the reaction $\pi^-p \to \Lambda X$.

PACS numbers: 13.75.Gx

An analysis of the dependence of the cross section of the process

$$\pi^- + p \rightarrow p + X(p - \text{forward})$$
 (1)

on the primary energy has revealed a phenomenon called relative scale invariance (RSI). ^[3] The invariant cross section of the inclusive reaction (1) decreases randomly (by approximately two orders of magnitude) in the primary-momentum interval $p_0 = 1.68 - 16$ GeV/c, so that ordinary scaling is

FIG. 1. Distribution with respect to the effective mass squared $M_{\pi p}^2$ of the reaction $\pi^- \to p\pi^- X$ (p and π^- —forward).

FIG. 2. Distributions with respect to the square of the Λ -hyperon missing mass M_x^2 in the reaction $\pi^-p \to \Lambda X$ (Λ forward).

not observed in this case. This cross section, however, divided by the cross section of the elastic reaction $[M_x^2 = M_\pi^2 \text{ in reaction (1)}]$, is approximately constant in the indicated range of p_0 .

To verify the validity of the RSI for other processes, we have undertaken a study of the reaction

$$\pi^- + p \rightarrow \Lambda + X(\Lambda - \text{forward}).$$
 (2)

Among the photographs obtained with the three-meter spectrometer of our institute, 131 we selected events in which a proton and a π^- meson were emitted forward in an angle, momentum, and coordinate interval bounded by the values corresponding to Λ -hyperon production. The distribution with respect to the square M_{rp}^2 of the effective mass of the secondary proton and π^- meson are shown in Fig. 1. The width of the signal from the Λ hyperon is determined by the apparatus resolution for the secondary π^- meson.

For events that fall in the interval $M_{\pi p}^2 = 1.24 \pm 0.04 \text{ GeV}^2$, we constructed

P _o GeV/c	$\frac{d\sigma/du _{u_{max}}(\pi^-p\to\Lambda K^\circ)}{\mu b/(\text{GeV}/c)^2}$	$y(\pi^{-}p \to \Lambda X)$, GeV ² $M_x^2 = 0.45 - 0.70$ GeV ²	$d\sigma/du _{u_{max}}(\pi^-p\to p\pi^-),$ $\mu b(\text{GeV}/c)^2$	$M_x^2 = 0.20 - 0.45 \mathrm{GeV}^2$		$y(\pi^{-}d \rightarrow dX^{-}), \text{GeV}^{2}$ $M_{x}^{2} = 0.20 - 0.45 \text{GeV}^{2}$
1.25	_				$5.49 \pm \frac{2.32}{1.23} [11]$	0,07 ± 0,02 [11]
1,48	_	_	_		$1.12 \pm {0.67 \atop 0.31} [11]$	0,06 ± 0,02 [11]
2,13	165 ± 36	0,30 ± 0,16	12,4 ± 2.9 [9]	0,09 ± 0.01 [2]		
2,69	79 ± 17	0.54 ± 0.35	110 ± 12 [9]	0.26 ± 0.03 [2]		
3,25	41 ± 13	1.01 ± 0.59	38,3 ± 4,2 [9]	0,23 ± 0,02 [2]		
8	$\begin{cases} 1,25 \pm 0.15 [1] \\ 0.91 \pm 0.09 [7] \end{cases}$	0.81 ± 0,25	3,83 ±0,48 [10]		_	_
81)		1,12 ± 0,39		0,25 ± 0,03 [2]		

1)With the signal subtracted from the resonance.

the histograms of the Λ -hyperon missing masses M_x^2 . These histograms include the events of reaction (2) with a certain admixture of a background from the reaction

$$\pi^- + p \rightarrow p + \pi^- + X_{\bullet} \tag{3}$$

In the calculation of the background we used data from intervals neighboring to the indicated $M_{\pi p}^2$ intervals. Figure 2 shows the histograms obtained after subtracting the background.

On the basis of the results we calculated the cross section $d\sigma/du$ of the reaction (2) for $M_{\rm x}^2=M_{k0}^2$ at $u'=u-u_{\rm max}\simeq 0.03\pm 0.03~({\rm GeV}/c)^2$ (see Table I), where u is the square of the four-momentum transferred from the π^- meson

FIG. 3. Cross section of the reaction $\pi^-p \rightarrow \Lambda K^0$ and the ratio of the cross sections γ (below) at $u \approx u_{\rm max}$ as functions of the primary momentum p_p . The straight line is an approximation of the data by the relation p_0^{-n} .

to the Λ hyperon. We introduced here a correction coefficient (an average of ~ 5 for each of the momenta, with an accuracy $\sim 20\%$), to allow for the admixture of the μ mesons and electrons in the beam, for the background due to the empty chamber, for the nuclear absorption of the secondary π^- meson, for the decay mode of the Λ hyperon, and for the loss of tracks in the course of scanning. The cross sections measured by us do not contradict the results of [4].

The data of $^{[1,5-7]}$ jointly with ours were approximated by the relation $d\sigma/du \mid u_{\max} \sim p_0^n$ (Fig. 3). This yielded a value $n=3.75\pm0.16$. In the Regge-pole model $n=2\alpha(0)-2$. The deduced value $\alpha(0)=-0.875\pm0.043$ corresponds to exchange of degenerate $(\Sigma_{\alpha}, \Sigma_{\gamma})$ trajectories in the u channel $(\alpha_{\text{theor}}(0) = -0.86^{[8]})$.

To check on the RSI hypothesis^[2] we calculated the ratio of the cross section

$$\gamma = \frac{d\sigma}{du} \left| u_{max} (\pi^- p \to \Lambda K^\circ) \middle/ \frac{d^2 \sigma}{du dM_x^2} \right| u_{max} (\pi^- p \to \Lambda X)$$
 (4)

at $M_{\mathbf{x}}^2 = 0.45 - 0.70 \text{ GeV}^2$, for our data at $u' = 0.03 \pm 0.03 \text{ (GeV/c)}^2$, and for the data of 11 at 8 GeV/c ($u' = 0 - 0.05 \text{ (GeV/c)}^2$). The obtained values of γ are shown in Fig. 3 and in Table I, and for 8 GeV/c the ratio was obtained in two ways, with and without allowance for the signal from the K^{*0} meson. Allowance for the possible signal from the K^{*0} meson at our energies hardly alters the value of γ . We have estimated the possible imitation of the Λ hyperon by a forward-moving K^0 meson whose decay π^* mesons are not suppressed by the Cerenkov counter: it amounts to $\lesssim 8\%$ and makes a contribution to the part of the spectrum with $M_{\mathbf{x}}^2 > 0.4 \text{ GeV}^2$. In addition, a contribution to the inclusive part of the spectrum is made by the contribution of the reaction with forward emission of a Σ^0 hyperon, but if it is assumed that the ratio γ for this reaction is the same as for the reaction (2), then the contribution should be negligibly small at our energies.

It is seen from the presented data that γ depends little on the energy in the interval 2.13—8 GeV/c, whereas the cross section of the reaction (2) decreases in this interval by more than two orders of magnitude if $M_x^2 = M_{k0}^2$. It is interesting that the value of γ itself for the reaction (2) turned out to be approximately four times larger than for the reaction (1) (see Table I).

¹K.J. Foley et al., Phys. Rev. D 10, 2763 (1974).

²B. M. Abramov *et al.*, Pis'ma Zh. Eksp. Teor. Fiz. **21**, 561 (1975) [JETP Lett. **21**, 261 (1975)].

³I. A. Dukhovskii et al., Prib. Tekh. Eksp. No. 3, 235 (1974).

⁴O.I. Dahl et al., Phys. Rev. 163, 1430 (1967).

⁵M. Pepin et al., Phys. Lett. B 26, 35 (1967).

⁶W. Beusch et al., Nucl. Phys. B 19, 546 (1970).

⁷H. Brundiers et al., Nucl. Phys. B 119, 349 (1977).

⁸V. Barger et al., Phys. Lett. B 29, 121 (1969).

⁹S. W. Kormanyos et al., Phys. Rev. 164, 1661 (1967).

¹⁰E.W. Anderson et al., Phys. Rev. Lett. 20, 1529 (1968).

¹¹B.M. Abramov et al., Preprint ITEP-21, 1975.