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A localization mechanism connected with the dependence of the percolation level
on the thickness of the conducting region is considered. The corresponding
dependence of the conduction activation energy makes it possible to estimate the
critical exponent that determines the behavior of the correlation length near the
percolation threshold.

PACS numbers: 72.20. —i, 71.50. 4t

A transition from the activationless temperature dependence of the conduction to an activ:
tion dependence has been recently observed and corresponds to localization of the electrons as tt
thickness of the conducting region is decreased.[!:?) In the cited papers, this effect is attributed t
the decrease of the “minimal metallic conductivity” on going to a two-dimensional disordere
system, in which the decisive role is played by small-scale fluctuations of the internal field.

We consider size-dependent localization of electrons due to the presence of a continuot
random field in the sample. The model of an inhomogeneous semiconductor with a continuou
random field was used earlier with success to explain certain singularities of recombination an
photoconductivity of disordered semiconductors, to describe conduction over an uneven surfac
and for other purposes.[*-31 We shall neglect hereafter, as in customary, the possibility of electro
tunneling through the classically inaccessible regions; this assumption is justified for smooth large
scale fluctuations of the potential. Accordingly, in an inhomogeneous system with large-scal
fluctuations the percolation level is close to the classical value E®, whose position depends on th
form of the characteristic functional Z2{U(x)] that determines the statistical properties of th
random field U(x), and on the dimensionality d of the space. In the two-dimensional case, for a
arbitrary symmetrical functional & {U}=Z{—U]} the critical fraction, corresponding to th
energy E@, of the classically accessible space is equal to ?=0.5I57}; in the three-dimensional cas
calculation using a Gaussian functional of the form Z {U} =exp[— (1/2{s,) § U(x) dx] yielded
value Y =0.17.181 If we assume the characteristic functional to be Gaussian, then the position c
the percolation level is given by

1
B0 - - yh (

and is reckoned from the average potential energy of the electron, while the parameter £¢
(d=2,3) is determined from the equation
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(d)
e,/’éz_ = l—2v£d) . (2)

V2’

1e values of f® indicated above correspond to £?=0 and £%=0.96. The inequality E? > E}
lects the obvious circumstance that when the dimensionality of space increases additional
ssible ways of going around the “humps” of the potential relief are produced, and it is this which
ids to a lowering of the percolation level. One can expect this lowering to take place also for non-
wssian potentials and when tunneling is taken into account, although the actual expressions for
2 percolation level will be different.

We assume for the sake of argument that the characteristic functional is Gaussian and denote
I, the characteristic scale of the potential. If we decrease the thickness w of the conducting
zion without changing the concentration and shape of the potential relief, then a transition to the
o-dimensional case takes place at w < /,. However, just as in the case of hopping conduction in
in films,[) the fact that the transverse dimensions of the system are finite comes into play already
w> I,. The point is that, in accordance with the usual assumption concerning the behavior of the
rrelation length L_ that characterizes the shape of the classically accessible region, this length
s a power-law dependence near the percolation threshold!'?l:

| v -—v<3)l i
L,=1, ——C-—C), (3)

(3)
vc

here v is a critical exponent that is somewhat smaller than unity for lattice problems. There is no
rcolation at small thicknesses; it appears only at L. % w. This means that the critical fraction of
¢ volume, v, begins to depend on w—the condition L_~w with allowance for (3) yields

! 1/v
v, (w) = uc(” [1 + B(—D) ] ) 4)
w

1ere B is some unknown numerical coefficient. The relation (4) is valid at w> /,, when the
fference between v (w) and ¥ is small; at thickness smaller than /, the value of v(w) tends to a
nstant value f2=0.5.

According to (1), (2), and (4), at a given thickness w, the critical fraction v (w) of the
lume corresponds to a percolation level

y 1/v
E,(w) =EP) +B,-/:1’(7) , (5

rere B, =4Bv{. If the Fermi level F in a bulky sample is located higher than E§Y but lower than
3, then a transition from metallic conductivity to activated semiconductor conductivity takes
ice when w becomes smaller than a value w, such that E (w,)=F. If the difference F— EP=¢, is
t very large, so that at E (w)~F one can still use formula (5), then at w <w, the activation
ergy of the static conductivity varies like

1/v

e(w)=-¢, + Blgb;/z(%) . | (6)

hen w is decreased, deviations from relation (6) should be observed—a slowing down of the
crease of the activation energy and a tendency of this energy to assume the limiting value
0)=EP—F at w<l,

2 JETP Lett., Vol. 26, No. 10, 20 Nov. 1977 I.LP. Zvyagin 532



ol L
2 25 3 35 & 45 5
10%w, A

It is of interest to compare the derived relations with the experimental data on the variation
the activation energy with the thickness of the conducting region. Data of this kind, pertaining
activation in the metallized impurity band of n-GaAs, is contained in®l. It should be noted tt
such a comparison is to some degree arbitrary, since it is not quite clearl!!! to what extent t
model used above suffices for the description of the system investigated inl?. The function €(
calculated from the data off?] is shown in Fig. 1. It is seen that the character of this depender
corresponds to that discussed above; at w400 A the experimental points are satisfactor
described by formula (6) with a critical exponent close to unity. This value agrees with t-
corresponding calculations for lattice problems!{'®!2l. The observed slowing down of the growth
€(w) at smaller w also agrees with the model discussed above.

I am grateful to V.L. Bonch-Bruevich and A.G. Mironov for useful discussions.
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