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Strong turbulence of magnetosonic waves and the associated collisionless energy-
dissipation mechanism are investigated.

PACS numbers: 52.35.Dm, 52.35.Ra, 52.25.Gj

In the present article we consider magnetosonic-wave turbulence for which the
principal nonlinear effect is modulation of the plasma density by the radiation pressure
of the magnetosonic wave and the coupling, due to this modulation, of the magneto-
sonic wave with low-frequency quasineutral motions of the plasma. The initial system
of equations for the description of the turbuler.ce then takes the form
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In these equations ¢(zr) is the scalar potential in the magnetosonic wave, 8n(z,r) is
the slow quasineutral variation of the density, the bar corresponds to averaging over
the fast frequency, and v, is the longitudinal velocity of the electrons:
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The longitudinal electric field is connected with the scalar potential by the equation
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It is assumed in the initial system of equations that an inhomogeneity with respect to
two mutually perpendicular axes is present in a plane perpendicular to the magnetic
field; then the coupling between the low-frequency and high-frequency motions be-
comes anomalously strong (see!'-2! ). The magnetosonic-wave dispersion law
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(opg=0,/V 1+l /0}, is the frequency of the lower hybrid resonance) admits of
the possibility of the localization of the waves in cavitons~regions of decreased density,

from which the plasma is forced out by the radiation-pressure force. Cavitons can be
strongly elongated along the magnetic field, k,/k SV m/M . An important feature of
the considered turbulence, which follows already from the dispersion law (3), is that
the maximum variation of the plasma density and correspondingly the maximum field
amplitude in the collapsing (k—> o) caviton is bounded:
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Under these conditions collapse is impossible, and the short-wave transfer of the mag-
netosonic waves is due only to modulation instability. The oscillations are transferrec
into the region of shorter wavelengths
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v/4 FIG. 1. I—Region of magnetosonic oscillations (step-
7 like transfer), II—region of lower hybrid resonance
(collapse and absorption by the particles).

vhere the considered branch of the magnetosonic waves “joins” the electrostatic
sranch of the lower hybrid resonance (see Fig. 1). The dispersion of the latter is due
0 the thermal motion w}=w?,+k?R* and admits of the existence of collapse. A
heory for the dissipation due to absorption of waves by particles in collapsing cavi-
‘ons, in the region of the lower hybrid resonance, was constructed inl?l. We examine in
rreater detail the short-wave transfer of magnetosonic waves under modulation insta-
sility. The dispersion equation that describes the modulation instability of a pump
vith frequency w,_ , a wave vector k, and an amplitude E, can be obtained in accor-
lance with the standard scheme of the linear theory. It takes the form
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For simplicity we have written down the dispersion equation for perturbations with
k>w,, and k, =0. At pumps that are not too strong
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he modulation instability produces primarily isotropization of the pump spectrum in
| plane perpendicular to the magnetic field. Transfer with respect to the modulus of
he wave vector takes place in a sufficiently narrow frequency interval A,=jwy , @, |
~€w, y in the vicinity of the pump frequency. Under these conditions, the region of
ower hybrid resonance is reached via multistep stage-by-stage transfer.

We obtain an equation for the stepwise transfer in an approximation where the
nagnetosonic waves have random phases. The phase randomization mechanism is
cattering by the density fluctuations produced by the low-frequency motions of the
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plasma. The magnetosonic-wave steady-state spectrum that results from the steplike
transfer is then determined from the integral equation
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Just as in the derivation of (5), we consider here perturbations with kc»w,,, and k,
=0,¢ is the angle between the vectors k and k’. We consider a region of frequencies far
enough from the pump, when the contribution of the latter to (7) can be neglected.
Assuming isotropy of the spectrum, the approximate solution of this equation is
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This spectrum corresponds to an approximate (with logarithmic accuracy) equiparti-
tion of the energy of the magnetosonic waves over the frequencies, such that the
energy directly connected with the pump in the frequency interval A, is ~E3 The
total energy of the magnetosonic waves is
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The spectrum is maintained stationary by the pump, and in the solution there exists a
constant energy flux towards smaller scales J="_, W [ Ymoa~ ko, is the growth rate
of the modulation instability of the pump and is determined from (5)]. The “effective
collision frequency,” which determines the rate of energy dissipation from the pump
wave, turns out to be

1 4g?
Veff = == " *¥Ymod. (10
EEX dt

The energy flux reaches the region of the lower hybrid resonance, where it is dissipated
on account of collapse. The oscillation energy in this region can be estimated from the
condition that the energy flux J= —vZHEWLH be constant over the spectrum, where
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s the effective dissipation frequency for the lower hybrid resonance (seef?l). We thus

dbtain
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The factor in the square brackets is usually large in comparison with unity, in agree-
ment with the condition for the applicability of the strong-turbulence approach to our
problem. Integrating in (8) over k>k. and equating the result to W2, we verify that
an oscillation accumulation takes place in the lower hybrid region and is due to the
rather slow dissipation of the corresponding modes.

One of the possible applications of the reported results is a theory for collisionless
shock wave propagating in a plasma transversely to a magnetic field.} The short-wave
:nhancement of the spectrum, due to the modulation instability, and the subsequent
wbsorption by the particles, produce an effective mechanism for the dissipation of the
:nergy of a nonlinear magnetosonic wave, and the threshold of this mechanism is
nuch lower than that of current instabilities on the wavefront. The structure of the
-esultant shock wave is determined by the corresponding formulas oft®], in which the
requency of the pair collisions ¥ is replaced by the effective dissipation frequency vq
letermined by formula (10).
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