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We present a method that makes it possible to obtain exact (in all orders in the
coupling constant) asymptotic expressions for the hadronic form factors in
quantum chromodynamics. The method can be used also to calculate the form
factors of bound states in other field-theory models, to calculate the hadronic
large-angle scattering amplitudes, and so on. By way of example, the method is
used to determine the exact asymptotic form of the pion electromagnetic form
factor.

PACS numbers: 13.40.Fn, 12.40.Cc, 11.10.J

We have previously!!! proposed a method of calculating the asymptotic hadronic
form factors, and described results obtained when account is taken of the interaction
at short distances in the lowest order in the coupling constant. The purpose of the
present article is to present a method of summing the entire perturbation-theory series
for this problem.

Consider, for example, the diagram of Fig. 1(a). We introduce an intermediate
cutoff parameter o such that p3<o?<g?|, o~ 1 GeV. Integration over each loop is

FIG. 1.
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broken up into a region of “large” ((k;> o) and “small” (k; < o) momenta. The circle
on the diagram 1(a) determines one of the terms of the obtained sum, and separates
the region of “small” distances (momenta k; > o inside the circle) from the region of
“large” distances (momenta k, < o outside the circle). In the internal loops, the small
momenta of the external loops can be neglected, and the diagram contracts effectively
to that shown in Fig. 1(b), i.e., a local operator acts from the small region surround-
ing the point “0”, and the non-contracted loops represent the part of its matrix ele-
ment between the operator brackets). Summing different diagrams and different meth-
ods of breaking down one diagram, we obtain the expansion (g=p’—p, p’ and p are
the hadron momenta):

<plIO)|p>p+ 2PdxC (A x,0)<p’| O,(x)|p>,= 2C (A q,0)

<p’| 0, (0)]p>,. (1)

The functions C, in (1) represent the contribution of the contracted loops (region of
small distances). The symbol o in (0, denotes that the integrals over the loops in
this matrix element are cut off from above at o~ (with an analogous general cutoff
A’>|g*|).

The expansion (1) is the intermediate stage of obtaining the solution, since the
matrix element {p’'|0,|p>, contains a large momentum transfer. However, a direct
examination of the diagrams that determine {p’|0,|p)>, shows the following" (as-
sume for the sake of argument that quarks 1 and 2 on Fig. 1 belong to one hadron,
while 3 and 4 belong to the other).

A) From among the diagrams containing particle exchanges between lines with
large momentum transfer ( ~q), only diagrams of the eikonal type survive [Fig. 2(a)].
The remaining diagrams [of the type of Fig. 2(b)] are suppressed in power-law fashion
(owing to the upper cutoff o of the integrals).

B) Since the hadrons are neutral with respect to color, the eikonal contributions
(cut off from above at o and in the presence of the gluon mass A) cancel each other
completely in each order of perturbation theory.

As a result, the sum of all the {p’| 0, | p),, diagrams containing exchanges between
lines with large momentum transfer is zero,” and we are left only with the diagrams
that do not contain such exchanges [of the type of Fig. 1(b)]. This makes it possible to
expand further in formula (1):
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<pIITO)p>pA2Z X G (A, g, 0)<p"]0, (0)]0>,< 0\0ﬂ2(0)lp>a' 2)
b W

We can now use the renormalization group, since the matrix element on the right-
hand side of (2) no longer contain large invariant variables (exceeding o). The renor-
malization group determines the dependence of <O,>, on o and of (J), on A (p, is
the subtraction point):

< 0,>, =Z7 (0 /p2, )< OR>,_ i <I> A= Z7NAYWE, <R

The renormalization of C,, in (2) therefore takes the form

nin,

<plIROIp> > 2 CR L (ke 67)< p7IOF (0]0><0] 0F (O)]p>,

172 (3)

R - - c 2
Cﬁl"z(qsllo . SZ)‘-' Z](AZ/I‘i J gz)Zni (02/"3: d 52)Zn; (02/“‘2’ ! gz)C"lnz(A'q’o’ g°)'
4)

From (4) we obtain in the usual manner2]

€ ds
CR  (qpy 8 = CR | Cugo ng s ENG/W2 explf — Ly (5 )=, (S)
172 172 gz B(S)

-ry,,z(S)] , (5)

where g is the effective coupling constant and ¥, are the anomalous dimensionalities
[the factor (g*/u2)¢ maintains the usual dimensionality].

Formulas (3) and (5) constitute the main result of the present paper. For me-
sons, for example, the typical operators O, [in (3) take the form dX(y D"—*I )
(0=d/9x,,, D =id—gB, I' is a numerical matrix ]. If we neglect the terms ~g* Ing’ in
the functions C® of (3) in comparison with unity, then the sums over the local
operators O, and O, in (3) turn into matrix elements of bilocal operators, and we
obtain the results of!*l,

The asymptotic form (3) becomes greatly simplified in the region g* Ing*» 1. Since
the vy, increase monotonically with increasing n, we can confine ourselves in the sums
over n, and n, in (3) to the first terms of the expansion, i.e., to operators with minimal
v, (more accurately, with minimal “twist”). Therefore at very large |g3 we have

<p’ 11ROV [p> » CT, (9, 1, 7)< 7| OR O] 0>< 0] 0F(O) [p>, (6)

where O, is the minimal-twist operator that yields a nonzero matrix element (O, is
defined analogously), while the asymptotic form of Cg, is determined from (5). In
particular, for the pion form factor, the operator with the minimal twist is the axial
current 4 2 (and also its derivatives of the type d,,..... 3, A}), and the asymptotic form
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is

<n'(p’ l 0)|a*(p)> R w9 oo 8 )< w*p”) 1 42 R (0)]0>< 0] 4R 0)| #*¢
- (p’+ p)#(f,z,/qz)ﬂz* (N~1)N-2 (b_Ing?/162%) "1, (7

where JR is the electromagnetic current, f, is the pion decay constant (=m,),
Q=3/2, by=(11/3N—2/3M) for SU(N). @ SU(M), (the coefficient (2’ is the result of
the contributions of the operators 3,,.....d, 4%). We note that as g¢°—— o the form
factor approaches zero from below.”

It should be noted that the method presented above for finding the asymptotic
forms is in many respects schematic, so that a direct verification of the results is
desirable. Such a verification was caried out by us for the pion form factor at the level
of the leading logarithms of one- and two-loop diagrams (corrections ~g* Ing* anc
g In’g?). Namely, we compared the direct calculation with the diagrams with the
expansion of the renormalization-group formulas (3) and (5) in powers of g*. The
results agreed.

We wish to express deep gratitude to A.I. Vainshtein for useful discussions.

"In the direct calculation of the diagrams we neglected the binding energy of the quarks in the hadron anc
introduced a gluon mass A of the order of the reciprocal radius of the hadron. The quarks are located ot
(or near) the mass shell.

2In electrodynamics, this statement can be easily verified in all orders in the coupling constants, since th
eikonal contributions can be factored out and add up to an exponential. In chromodynamics we hawv.
verified this statement for one- and two-loop diagrams. It is clear from the analysis, however, that the
cancellation will take place also in higher orders. In renormalized theories without vector mesons, there ar:
no eikonal contributions at all, so that this statement is obviously valid. The contributions from eikona
diagrams that go from the region of large momentum are included in the functions C, in (1). In nth orde
perturbation theory, the individual diagrams make contributions ~ (g? In%g*)”, but the sum of all th
diagrams of nth order makes a contribution ~ (g*>Ing?)”, since all the doubly-logarithmic terms cancel ou
as a result of the neutrality of the hadrons with respect to color.

YThe asymptotic form of £, is given by (7), since the anomalous dimensionalities of the electromagnetic anc

axial currents are equal to zero, and the Born approximation for the function CR of (7) is ~0(g?).
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