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The asymptotic forms of the correlation functions in the one-dimensional
Hubbard model, when umklapp processes are significant, are obtained. It is
shown that two types of pairing in the ground state are simultaneously realized.
The corresponding correlation functions fall off in power-law fashion at large
distances.

PACS numbers: 71.10.+-x

The asymptotic forms of the correlation functions were recently calculated!?
for a one-dimensional electron gas in the absence of umklapp processes (see
also™3), The kinetic energy of the free electrons was linearized near +kp, and
this made it possible to use the so-called ‘“boson representation” for the field
operators

Wy = L™ 4364, (k) + (2na)” hexp (-1 [~ ik px + SA(x,k)p, (k)11 (1)

The exponent i=(1,2) corresponds here to electrons near +kgp, s is the spin in~
dex, p;(k)= @} (p+k)a;(p), Alx,k)=27L"1kexp(—a |kl /2—~ikx), and vpa-!
is interpreted as the width of the conduction band.

It will be shown below that the boson representation technique makes it possi-
ble to find the asymptotic forms of the correlation functions also in those cases
when the umklapp processes are significant. For simplicity we consider the
one~dimensional Hubbard model with a half-filled band. The interaction con~
stant of the electrons will be assumed to be small: lg| < 2qvp, Such a system
corresponds in the representation (1) to a Hamiltonian?

H=h{pi;—g§+h{oi;g}, 2)
where

Kp,;-gl=2nfvp+ 8o )L kg) JLpilk)p (= k) + p, (= k)py (k)]
+ gL Ep (k)p (~k) - g(2ma)? [dxlexp(2% BA(x, K)py (k) + pyfk) N+ cacn}, (3)

h{(r;;g} is determined by replacing p; in (3) by g; and g by —g; p; = 9.1/ Z(Pir
+pg), op=2"12(py, —pp), where
[pi'al-]r-ﬂ, (4)

i kL
Lo (k) pj( =k =loy (k) 0, (= k*) ] = (1) F 8y == 8y,

We note that in the Hubbard Hamiltonian (2) the umklapp processes correspond
to the last term in A{p;; —g}.
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We are interested in the correlation functions that describe the fluctuations
of singlet and triplet Cooper pairs (SCP and TCP), as well as fluctuations of
the dielectric (CDW) and antiferromagnetic (SDW) type:

ikpox
Kepy = < () Whalet ) i 0.00 05 0.00> = ¢ T k! (~g) K (3,
+ . zikFx + -
KS DW = < ll’”(x.t)‘/’zg(xnt)\bzy(o-o).‘/’u(o-o) > =e Kp(-g)Kc(g)v
Kgep =< gl )y (2,0 ) 3,(0.0) 3y (0.0)> = K> (-g) K5 (g), (5)

Kpcp =<yl t )y (5.t ) §34(0.0) ¥ 1,(0.0) > =K (-e)Kz(e),
where
K:f’ (~g) =(2na) =l ¢ elthexp[~-2" ‘/22 A(%,k)(p, ipz)]e""h

x exp[27 %S 4(0, k)p, £p,) 1>, (6)

he?e h=}k{ ps; —&}. KE(g) is obtained from (6) by replacing p; with oy and k
=h 0381

The factorization in (5) was made possible by the fact that the field operators
$;s are expressed in accordance with (1) in terms of an exponential of a function
linear in p;,. Since the commutation relations of p; and o; are the same,
K#(~g)= Kf(—g) and consequently the problem reduces to finding the four func~
tions KF(g 2 0).

The KZ(g>0) can be calculated, inasmuch as a situation of the zero~charge
type arises at g >0 following normalization in h{o,-; g}. For the calculations we
note that the parquet approximation was sufficient to find the correlation func-
tion in a gas with é-function repulsion!’~%!

E’CDW (g> 0)~(ln o) _3/2w-g/2nvp’ ;{smv (g > O)A'(lna))‘/*w 7
On the other hand, the factorization relations of the type (5) are valid also for
these functions, the factors K, + (&) remaining unchanged, while K}(~g) are re-
placed by R *(—g) The &, S(—g) are calculated from formula (6) with A= h{p‘ gh
while %i{p;; ~ g} are determined by formula (3) but without the last term (this
term describes umklapp processes, which do not exist in a gas with S-function
interaction), h{p;, -g} is quadratic in p;, and therefore the function K (-8 can

be easﬂy obtained“
-1 -g/Zm;F .

g/ZnuF

Kp (-8 ~w (8
As a result we obtain from (7) and (8) the asymptotic forms of KX (g>0)

K (g> 0= Kl > o)/E;‘,(—gg) ~ 1n'3’2[x2-(v't)21/[x2—(u':ﬂ]’/z. (9)

K> 0= Ko pylg> 0/K ) ~Inhla? = (0%)2)/ 12 = (072214, (10)

where v’ =vp —g/2r.

Reducing the problem to a two~dimensional Coulomb gas, it was shown in'3?
that at large distances we have the asymptotic behavior
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K;(g < 0) ~ const . (11)

It remains to explain the behavior of the function K;(g <0). It was noted inf?
that at g=— (6/5)rvp it is possible to calculate X;{x, ). This circumstance makes
it possible to find the asymptotic form of K;(g <0), inasmuch as-at £<0, as the
result of renormalization, the charge arrived at the point g=—§1rv r, g is the
coefficient at

2Lt 3 Lo (k)o,(~k)+ay(~k)o,(k)]
E>0

in the renormalized h{cr;;z}). Omitting certain details (we note only that ?)lF
=1.25(p —g/2m +0(g%)), we present the final result
1

K (g< 0)~ exp —2ALx/v0)? - 2041, (12)

(x/v".)l . tZ
where
3
v vp + gl /27 and A ~ g Up‘ /13XP(‘"VF/|51 )
is the gap in the spectrum of the fermion excitations €(p) = [A2+ @"p)211/2,

it follows from (5) that K;(g <0) enters in Kgop(g>0), Kgpw(g <0), and
Krop(£$ 0). These functions fall off exponentially at large distances; in addition

ImK" . (g>0), ImKL _(g<0), ImK] (620) ~8(lw| ~24), (13)
sCp SDVW TCP <

KT is the susceptibility and describes the response of the system to the action of
the corresponding external field.

In the remaining cases we obtain a power~law decrease of the correlation
functions

Kepultz 0~ e FF L PO (v'e )17 1a? = (v7e) 115, (14)
Knulg> 0).~ R B B PN LI VS (15)
Kop(6 < 0~ Inl2? = (v°¢ )21/ (22 = 07 )25, (16)

where vp=vp— | g 1/2r is the velocity of the gapless excitations,

The slow (power-law) decrease of the correlation function at large distances
means that a corresponding type of pairing is realized in the system, although
no long range order is produced, owing to the strong quantum fluctuations in-
herent in a one-dimensional system, It follows from (14)—(16) that two types of
pairing in the Hubbard model are realized simultaneously: SCP and CDW in the
case of attraction, and SDW and CDW in the case of repulsion. To excite waves
of another type it is necessary, according to (13), to expend an energy 2A to
break the pair.

In conclusion, the author thanks A,.I. Larkin, P, B. Vigman, and D, E,
Khmel’nitskil for useful discussions,

1A, Luther and V.J. Emery, Phys, Rev. Lett. 33, 589 (1974).
:p,A. Lee, Phys. Rev. Lett., 34, 1247 (1975).

75 JETP Lett,, Vol. 25, No. 2, 20 January 1977 A.M. Finkel’shtein 7!



38, T. Chui and P. A. Lee, Phys. Rev, Lett. 35, 315 (1975).

4A. Luther and I. Peshel, Phys. Rev. B8, 2911 (1974).

SD. Mattis, J. Math. Phys. 15, 609 (1974).

8V.J. Emery, A. Luther, and I. Peshel, Phys. Rev. B13, 1272 (1976).
"Yu.A. Bychkov, L.P, Gor’kov, and I. E, Dzyaloshinskii, Zh. Eksp. Teor.
Fiz. 50, 738 (1966) [Sov. Phys. JETP 23, 489 (1966)].

1. E. Dzyaloshinskii and A.I. Larkin, Zh. Eksp. Teor. Fiz. 61, 791 (1971)
{Sov. Phys. JETP 34, 422 (1972)1.

%3, Solyom, J. Low Temp. Phys. 12, 547 (1973).





