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We investigate the dependence of the phase-transition temperature T, in a quasi-
one-dimensional system on the value w of the transverse kinetic coupling, which
characterizes the ease of tunneling of electrons from filament to filament. With
allowance for one-dimensional fluctuation effects (carried out in second order of
the renormalization-group method), it is shown that T, can have a maximum in
the region of small w.

PACS numbers: 64.60. —i

It is known that in one-dimensional systems and in a system of weakly bound
one~dimensional filaments, it is necessary to take simultaneously into account
the Cooper and the Peierls instabilities, !1+?} the fluctuation effects, and the
special role of collective excitations. [¥! We investigate below, by the method
proposed inf4!, the dependence of T, on w with allowance for all these factors,
in a wide range of values of w,

Let the one-dimensional filaments be packed into a flat lattice with period a.
Neglecting tunneling between the filaments, the electron spectrum is planar.
Allowance for the transition between filaments leads to a corrugation of the
Fermi surface
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E(P)‘fp=vp{ipul‘Pp)*w(P_L)° a

Here p, is the projection of the electron momentum along the filament; vy and
pr are the Fermi velocity and momentum in this direction, and depend little on
p i w/ex<«<1. Two qualitatively different cases are possible. In case A, the
degenerate form of the electron spectrum, typical of a one-dimensional system,
is clearly preserved:

elpy ~ep=-lelp-a,)~¢pl.

This causes anomalous scattering in the electron-hole channel, characterized
by a momentum ¢4, and leads fo the appearance of logarithmic singularities.
For example, if we put

wip,) =- 2w[cos(-¥-x) + cos(%)]

(here q¢=2pp, i/a, n#h/a), then the corresponding singularities correspond to
anti~Peierls instability. We shall designate the case in which (2) is not satis-
fied by B.

An important role is played here by the interaction of electrons belonging to
different Fermi surfaces, the total vertex part of the interaction being of the
form

1
T{b+c »btc)=- -i-[ylglaf,ai + yzgzlblc] _.},454[0‘,:0: + ”I:”: 1, (3)
where the letters b and ¢ denote the electrons situated at the Fermi surfaces

+ pp; 0% and o*=0%+ jo¥ are Pauli matrices, and I is a unit matrix, all acting
in the space of the spins of the electrons b and ¢. The amplitudes v, g; and

v, g» describe interaction processes with small momentum transfer, vy, g, cor-
responding to that part of the scattering which is antisymmetrical in the spins,
and v, gy to the symmetrical part; v, g4 corresponds to processes with transfer
of a large longitudinal momentum ~ 2pp. In (3) we separated the vertex function
v; and the “charge” g;, The model investigated in‘*3 corresponds to the follow-
ing choice of charges {g}}: gi=g1=g4; &=g|— 2g}. The bare coupling constants
gJ, which are assumed to be small, are determined at a “cutoff” energy wp.

The investigation of the thermodynamic instabilities of the system reduces to
a study of the vertex functions, the approximately correct behavior of which is
obtained in the one~dimensional case with the aid of the renormalization-group
method. 5:81 The invariant “charges” g, satisfy the Lie differential equations,
and the function \If{gi} of Gell-Mann and Low can be approximated in the quasi-
one~-dimensional case in the following manner.? At T > w it coincides with the
corresponding expression obtained for ¥{ g;} for a one-dimensional system in
third order in g;.15) In the region T <« w we confine ourselves to the second or-
der in the expansion of ¥{ g; } in powers of g;. This is equivalent, in the sense
of the phenomenological theory of phase transitions, to the molecular-field
approximation. In this region, the vertex functions and the invariant ‘“‘charges”
behave in the same manner. Thus, we have the following equations (case B)?):
at x=T/wp>y =w/wp we have

d 0.2 (1 o d , d
a1y gall+rg)i 2—~g=58,2+8)+ ey x-;;gfﬂ (4)
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and at x>y

d d 1 d
2 r — I e~ ——— 2 2 — 2'  emtn— 3 .
T 8T BT 816 g =T (81T 63) L e = 6164 6264 (5)

The initial conditions for (4) are g;(x=1)=gJ. The quantity g; depends on y only
if x<y, since the solutions of the systems (4) and (5) must be matched at x=y.

The system can be easily integrated; we obtain®’

g10y) + g3(y)
g.(% y) + g,(%, y) = ’

(6)

1 x
I+ 7(51(}’) + 52(}’))1117

81(y) - g,(y) +2g,(y)
g1(% ) ~gy(x,y) +2g,(x,5) = . (7)

i %
1- -2—(51(7) - g,0v) ¢ ng(y))l“y—

The three pole singularities correspond to the three possible realizations of
ODLRO in the system: pairing of the electrons in the friplet state with total-
spin projection equal to + 1 and 0, and in the singlet state. The corresponding
critical temperatures, apart from the pre-exponential factor, are equal to

§=1; S =1 2
T : = wexpl- ——————;
g.(v1+ gyly)

2
§S=0,138 =0
T, Z = wexp [-— ] (8)

8,(v)42g (y) - g (y)

The solution of the system (4) cannot be written down in explicit form, and we
indicate only the following properties of these solutions: gy{x), g x)—~1 at
gg< I g1 in the limit as x— 0 and g,(x) ~ 0, and g (v}~ (C/2) + (C*/4+ C)/? at
gi=1g}1 in the limit as x — 0. Here C=((g})?~ (g]))(1+g)~1=(gl(x) — gi (x))
x (1+ g3 (x))! is the first integral of motion of the system ().

FIG. 1, Dependence of T, on w in the case
A for the Little mechanism of interaction.
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FIG. 2. Dependence of 7, on w in case
B for the phonon interaction
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In case A, at x>y, (4) remains in force; in the region x <y, with allowance
for the anti-Peierls instability, we have

d
- 2, —_ -0 — = 9
st T el rome sl - ©

The pole singularity in the solution arises at gJ< | g} | and corresponds to sim~
ultaneous instability relative to the anti-Peierls doubling and the Cooper pair-
ing. For T, we have

T,(w) = wexpl (g2 (y) ~ g3(y))" harc cth(2g,(y) [ (y) - g2(r) 1" 4 1. (10)

Thus, the transition temperature depends on the three~dimensionality param-
eter and on the magnitude and character of the interaction. We shall analyze
this dependence for two interaction mechanisms: the phonon mechanism and the
“Little”” mechanism, If the interaction is due to exchange of phonons with large
(~ 2pp) longitudinal momentum transfer, then gj= g)=gl=~v and are limited to
frequencies on the order of the Debye frequency wp. The Little mechanism pre~
supposes that gf=— gd= g)=— A, 115} and the cutoff energy © is of the order of

€pe

For the Little mechanism, T, increases in the interval 0 <» <w monotonical-
ly from 0 to Ty=wexp(—{)), which is the value of the critical temperature ob-
tained in the parquet approximation for a one-dimensional system.!!! It is shown
in Fig. 1 for case A and is described by the equation [here A=Ty(\/(1 - )1/2]:

1+(’7§£)2+ 1n(.§)2=0. (11)

w

For the phonon mechanism in case 4, the function T,(w) is described by (11)
with the substitution A— v, In the case B, the function T (w) is shown in Fig, 2.
It has a maximum at w=w,<wp, with T,=T_ (w,)>Ty= T, (wp). Using (4) and
{8), we can obtain for w,, and T, the following system of equations:
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2
T, = wmexP(-—————) , (12)

v 31/

it

1~ v,
By -2 =122~y ); ) e"p('_ °—)

Vm 1 -v 2v,

vhere Ty=wpexpl(—1/v) corresponds to the transition temperature for a strong-
y anisotropic superconductor, and we choose from among the solutions of (12)
‘he one for which v, >v.

The increase of T, is due to the fact that in this type of system there is an
additional renormalization of the coupling constants, due to the presence of
singularities of the Peierls type in the temperature region w < T <wp,*) which
effectively increases the interaction constants, and by the same foken also T,.
At w<w,, inthe temperature region w= T=uw,, an important role is played
also by longitudinal density fluctuations, which limit the subsequent increase of
the coupling constants, and it is this which leads to a decrease of T, at w<w,,.

The present approximation is confined to values w > A (see (11)). At w= A all
the g; become ~1, and Eqs. (4), (5), and (9) no longer suffice. We note that the
maximum on Fig. 2 is located in the region where the theory is applicable. It
is possible that a reasonable approximation at w << A is provided by the method
of the average field with respect to w, in the spirit ofl3,8!

DA rigorous proof calls for introduction of scaling with respect fo the
parameter, [7]

DWe have introduced here the dimensionless “charges’ by multiplying the
initial g; by p/4, where p=2/nhvpa’ is the density of states on the Fermi
surface.

$The fact that Egs. (6)—(8) and (10) contain g;(y) and not g} seems to corre-
spond to the moving~pole idea.'?} Formulas (4) give a concrete prescription
for finding the position of the moving pole.

DRenormalizations of this type, which are responsible, for example, for the
softening of the phonon mode, arise in the region T'>wjp. It is assumed here
that they are included in v, Such renormalizations can be consistently taken
into account within the framework of the two-limit technique (see, e.g.,[f),
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