Study of resonant electron tunneling with a scanning
tunneling microscope

M. Yu. Sumetskil
M. A. Bonch-Bruevich Leningrad Electrotechnical Institute of Communications

(Submitted 24 -April 1986; resubmitted 11 August 1986)
Pis’'ma Zh. Eksp. Teor. Fiz. 44, No. 6, 287-290 (25 September 1986)

A resonant transparency has been found in a three-dimensional asymmetric
potential barrier, serving as a model of a (microscopic proturberance)-vacuum-
(defect in insulating film) structure. As the microscopic proturberance moves in a
direction parallel to the surface of the film, the transparency above the defect may
have not only a maximum but also a local minimum. The path traced out by the
sharp point of a scanning tunneling microscope in a small neighborhood above the
defect has been determined.

The resonant tunneling of electrons through a small set of point defects in an
insulating film was studied in Ref. 1. It was shown in Ref. 2 that a scanning tunneling
microscope® (recently constructed in the USSR*) is capable of observing single defects
and thereby visualizing the internal structure of thin films. It appears that an experi-
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ment similar to that in Ref. 2, but in which there was the flexibility of varying not only
the applied voltage and the temperature (as in Ref. 1) but also the distance from the
sharp peint to the defect, would make it possible to look at the process of resonant
tunneling in an unaveraged “pure” form. A comparison of such an experiment with
the theory would make it possible to study both the time-varying effects accompanying
resonant tunneling and the resonant-tunneling dynamics proper—topics which have
recently been the subject of some discussion.’™ In the present letter we derive a theory
for the resonant tunneling of electrons from the sharp point of a scanning tunneling
microscope through an unfilled level of a defect in the film of an insulator.

We write the Hamiltonian describing the motion of the electrons in the form
H= —%%/2+ V(r) +a(|r —ry|). Here ¥(r) = ¥V(z,p) is an axisymmetric poten-
tial, assumed to be semiclassical outside the film and outside the sharp point, while 4 is
a well of zero radius, which serves as model of a defect. We assume that the film is
wide enough that the nonresonant transparency is exponentially small. The resonant
current will then be concentrated in a narrow tube containing the defect, and it will
fall off quite rapidly as the microscopic protuberance is moved away from the point
(X0Y0Z3) (Fig. 1). In this tube, the electrons move along paths p(z) which deviate
only slightly from the z axis. In a first approximation in p, these paths satisfy the
equation
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To calculate the transparency of the barrier D(£), we assume that the displacement of

the microscopic protuberance in the (x,p) plane, i.e., s = /x3 + 3, is much smaller
than the scale length of the problem along the z axis.

In a small neighborhood of the defect, in which V(z,p) can be assumed to remain
constant, the wave function can be written®
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FIG. 2. Schematic diagram of the wave func-
tion of the problem.

where ¥, is the wave function corresponding to the Hamiltonian A — #, and E, is the
energy of a bound state in the well. The solution V¥, is found by the method illustrated
in Fig. 2. In the film, the potential ¥ is assumed to depend on only z, so that the
Schrodinger equation allows separation of variables here. Continuing the standing
spherical wave in (2) to the left, and requiring, after the joining at the boundary z,,
that there be only an outgoing wave to the left of z,, we find the wave function V. A
continuation of the spherical wave to the right is carried out by making use of the
asymptotic solution of the Schriédinger equation near the z axis, given in Ref. 9, and
also by assuming that in a small neighborhood of the tip of the microscopic protuber-
ance the boundary has the shape of a paraboloid of revolution, z — z; = p*>/2R. The
functions W{» and ¥{» are found by requiring that after a systematic joining of the
spherical wave at the film boundary z, and at the boundary of the microscopic protu-
berance the solution to the right of z; has the form of an outgoing wave. Furthermore,
we continue the plane wave ¥, = (2E) ~""* exp{ip,x + ip,y — i[\2E — (02 +p2)/
V2E ]z}, where” p, , <y2E which is incident at a small angle, along with the corre-
sponding outgoing wave across the boundary of the microscopic protuberance, having
found a solution W' which falls off exponentially inside the barrier. The wave function
found in this manner, shown schematically in Fig. 2, satifies the boundary conditions
of our problem within exponentially small terms. From the equation
VO (r,) + ¥V (ry) + ¥, P(ry) + ¥,2(ry) = ¥,(r,) which follows from (2), we can
determine ¥, (r,). We can then find the transparency D(E) by calculating the flux of
the wave function to the left of z, and averaging it over p, and p,.

Before we write the result, let us determine the solutions p}'z of Eq. (1) by means
of the initial conditions p;(z;) =p} (z;) =0 and pj, (z;) = p}(z;) = 1. We also intro-
duce the matrix T = ||1,/|| through the relation p§ (z) = #,,0; (2) + £,.03 (2). We intro-
duce the notation

s=Fiplaz =P oy Ip(z)|
; wpldz, 7.=f s pj m p(z) s
I o I o ipl z~2;%0

toj =R M tyj+ 15, qj=tjia +T2D2 1.
Our final expression for D(E) is then
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where the decay widths " and I' _ are given by
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To save space, we will not write out the expresion for E,. An analytic expression for 7'
can be found easily in the case in which equation of motion (1) can be integrated in
quadrature in the vacuum, e.g., in the case in which the potential V is spherically
symmetric and independent of p. In the simple model of a uniform barrier, with
Po=pi =p;" =p; =p;,wehave go=R "'z;4+ 1, ¢, =25, a=py(R+2,)"". In
this case, the result in (3), (4) in the limit R = « follows from the theory of Ref. 10.
It can be shown directly that the transparency in (3) does not depend on the direction
which we select for the incident wave. This conclusion is also demonstrated by the
symmetry of expression (3).

If we have I’ < I'_ at s = 0, the penetrability of the barrier as a function of the
horizontal coordinates of the microscopic protuberance has a maximum above the
defect, at the point s = 0. In the opposite case, I', > ['_, in which the microscopic
protuberance and the defect lie close to the film surface, the point s = 0 corresponds to
a local minimum of the penetrability (the maximum transparency now on the circle
s = const, defined by the equality I', =T).

In a scanning tunneling microscope with the feedback which is ordinarily used,
which tracks a level of constant current j = (F(E)D(E)dE [F(E) as expressed in
terms of the electron state density and a Fermi distribution function''], as the sharp
point moves in from a region far from the defect it passes over the defect into the
region with I' | < I"_. Part of the region I' | >I'_ may be unstable. At sufficiently
small values of I' _,I"_, and the shift of the level E'O, the function F(E) can be taken
through the integral sign, and we find j = 7F(E,)[' . I'_(I', + ')~ ". In this case, the
condition for a constant current takes the form I' | = const. Also using (4), we find
an expression which determines the path, z,(s), traced out by the tip of the sharp point
of the scanning tunneling microscope in a small region above the defect—an expres-
sion which is independent of the temperature and the state density of the electrons—
where in S; it is necessary to allow for the z;, dependence of ¥, which keeps the applied
voltage constant. For the model of a uniform barrier, the radius of curvature of path
(5) at the tip is d = R + z,. The expressions derived here could easily be corrected to
allow for the differences in the effective masses in the different regions.

The method of detecting the jumps of electrons which are filling and leaving a
defect (as the temperature is lowered, these jumps become significantly less fre-
quent'?) and also the method of inelastic tunneling spectroscopy for scanning tunnel-
ing microscopy'?® would in principle make it possible to observe this effect and to study
it to some extent. A study of resonant tunneling would supplement these methods and
would make it possible to obtain new information about a defect.
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I am sincerely indebted to B. L. Al'tshuler for a useful discussion of these results
and G. N. Fursei for support.

YAt z>z; we assume V(z,0) =0.
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