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The spectrum of low-frequency electomagnetic waves in a superlattice is calculated
for the case with a quantum Hall effect.

The experimental observation' of a quantum Hall effect in a GaAs/(AlGa)As
superlattice in a magnetic field directed perpendicular to the layers of this lattice
makes it an urgent matter to study the electrodynamic properties of such systems. A
superlattice in a quantizing magnetic field differs from a two-dimensional system in its
conductivity along the magnetic field H,, = #H. The Hall conductivity o, has a
quantized value e’s/2n#id at H = H, = (2weficnd)/s (d is the period of the superlat-
tice, n is the volume density of electrons in the superlattice, and s is an integer) when
the Fermi energy of the carriers” coincides with the boundary of one of the minibands,
and the electron system thereby simulates an insulator, but one in which a nondissipa-
tive Hall motion of electrons is allowed.>?

At H=H, all three dissipative components of the conductivity are zero
(04 =0, =0, =0) or at least very small in comparison with the Hall conductivity
ogy. In those cases in which the Hall conductivity is substantially greater than the
dissipative conductivity, weakly damped waves (helicons*) can propagate through the
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conductor. In a superlattice, helicons should have some unusual properties, because of
the vanishing of all the dissipative components of the conductivity.”

The Hall current is j,; = oy [E]. Assuming, for simplicity, that the dielectric
constant of the superlattice is isotropic, we write Maxwell’s equations in the ko repre-
sentation (k is the wave vector, and @ the frequency):

-

[kH] =~ (4nioy/c) [nE]} - (we/c)E,

(n

[KE]= (w/c)H,
where E and H are the electric and magnetic fields of the wave. By using static values
of oy and € we are restricting the analysis to low-frequency, long-wavelength oscilla-
tions. In particular, we have w €w,, where @, is the cyclotron frequency in the field H.
The frequency @ may exceed 4moy = 4rne’/m*o, = v’ /w. (provided, of course,
that the condition @, >w; holds; m* is the effective mass of the conduction elec-
trons). From (1) we have

ME)(w?e/c? = k?) + (4mio g /we)Kn] (KIRED) — (4mio,, /e [nE]1n] = 0;

(En) = (4iaylwe) (o efc? ~k2)! (k) (K[TE]). @
It is thus a simple matter to derive a dispersion relation relating » and k:
** — wre/e*) ~(4nog/w)® (w*/c* - Wk sin® 8,/c*€) =0. (3)

Here 0, is the angle between the vectors % and k; this angle specifies the wave propa- ,
gation direction. From (3) we have

, o 1 <4rraH)2 sin® 6 +\/< dmogw )2 1 (47rqH>“ sin® 6,
k*= —e— — * cos* 6 + — .
c? 2\ ¢ € c? k 4\ ¢ 2

4)

€
We set that for any value of the angle g, , there is an undamped wave (a “plus-wave”:
an undamped helicon), which is an analog of an ordinary helicon, which propagates
along the strong magnetic field in an uncompensated conductor.* The absence of
damping is not solely a consequence of the vanishing of the dissipative components of
the conductivity (as discussed above); it is also a consequence of the fact that Landau
damping (the direct absorption of wave energy by electrons) is possible only at
® > a,, since an electron which has absorbed energy must undergo a transition from a
filled minigap to a vacant one.

The second wave, the “minus-wave,” may be either exonentially damped (under-
going total internal reflection from the surface of the superlattice) or a propagating
wave (similar to a wave in an insulator), depending on the relation between @ and
4roy.

Of particular interest are extremely low frequencies, with 8, #0 (for definiteness,
we set 0, = 7/2):

2 2 2
k2 = _(i €— }.(%) i + 1(4'”0'”) _1. . (5)
c € 2 c €
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We see that one of the waves is a totally ordinary wave [k 2 = (w?/c?)€], while the
other has an extremely unusual dispersion relation:

k* = (ize—(ﬁ{)z_l (6)

c? ¢ €

In other words, at @ €47oy, /€ we should see a sort of “Meissner effect”: A quasistatic
electromagnetic field does not penetrate into the superlattice [at H = H (!)] even in
the limit @ — 0. The polarization of the first wave is no different from that of a linearly
polarized wave in an insulator (in particular, we have H1E), while the second wave
has not only an usual dispersion but also a “strange” polarization: The magnetic field
of the wave vanishes in the limit @ —0 (at a fixed value of the electric field).

The existence of a “wave” with & #0 at @ =0,

4T!0'H 2 Sin2 9
= k
¥ —_< ¢ ) e b

L #0, (7)

undoubtedly reflects the fact that the motion of the charges in the superlattices is
nondissipative at H = H,, which makes superlattices similar to superconductors.

The field H does not have to be equal to H, for an observation of the properties of
superlattices which we have described here. The localization of electrons leads to the
existence of a finite interval AH in which the dissipative components of the conductiv-
ity tensor of the superlattice will be zero.’

The undamped helicon described here should apparently propagate in Hall di-
electrics, whose discovery was reported in Ref. 6.

"We are restricting the analysis to a zero temperature.
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