Undamped helicon

L. Vendler and M. I. Kaganov

Institute of Physical Problems, Academy of Sciences of the USSR

(Submitted 18 August 1986)

Pis'ma Zh. Eksp. Teor. Fiz. 44, No. 7, 345-346 (10 October 1986)

The spectrum of low-frequency electomagnetic waves in a superlattice is calculated for the case with a quantum Hall effect.

The experimental observation of a quantum Hall effect in a GaAs/(AlGa)As superlattice in a magnetic field directed perpendicular to the layers of this lattice makes it an urgent matter to study the electrodynamic properties of such systems. A superlattice in a quantizing magnetic field differs from a two-dimensional system in its conductivity along the magnetic field $\mathbf{H}_{\rm ex} = \vec{\eta} H$. The Hall conductivity σ_H has a quantized value $e^2s/2\pi\hbar d$ at $H = H_s = (2\pi e\hbar cnd)/s$ (d is the period of the superlattice, n is the volume density of electrons in the superlattice, and s is an integer) when the Fermi energy of the carriers ocincides with the boundary of one of the minibands, and the electron system thereby simulates an insulator, but one in which a nondissipative Hall motion of electrons is allowed.^{2,3}

At $H = H_s$ all three dissipative components of the conductivity are zero $(\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = 0)$ or at least very small in comparison with the Hall conductivity σ_H . In those cases in which the Hall conductivity is substantially greater than the dissipative conductivity, weakly damped waves (helicons⁴) can propagate through the

conductor. In a superlattice, helicons should have some unusual properties, because of the vanishing of all the dissipative components of the conductivity.²⁾

The Hall current is $\mathbf{j}_H = \sigma_H [\vec{\eta} \mathbf{E}]$. Assuming, for simplicity, that the dielectric constant of the superlattice is isotropic, we write Maxwell's equations in the $\mathbf{k}\omega$ representation (\mathbf{k} is the wave vector, and ω the frequency):

$$[\mathbf{k}\mathbf{H}] = -(4\pi i \sigma_H/c) [\vec{\eta}\mathbf{E}] - (\omega \epsilon/c)\mathbf{E},$$

$$[\mathbf{k}\mathbf{E}] = (\omega/c)\mathbf{H},$$
(1)

where E and H are the electric and magnetic fields of the wave. By using static values of σ_H and ϵ we are restricting the analysis to low-frequency, long-wavelength oscillations. In particular, we have $\omega \ll \omega_c$, where ω_c is the cyclotron frequency in the field H. The frequency ω may exceed $4\pi\sigma_H = 4\pi ne^2/m^*\omega_c = \omega_L^2/\omega_c$ (provided, of course, that the condition $\omega_c \gg \omega_L$ holds; m^* is the effective mass of the conduction electrons). From (1) we have

$$[\vec{\eta}\mathbf{E}](\omega^{2}\epsilon/c^{2} - k^{2}) + (4\pi i\sigma_{H}/\omega\epsilon)[\vec{k}\vec{\eta}] (\vec{k}[\vec{\eta}\mathbf{E}]) - (4\pi i\sigma_{H}\omega/c^{2})[\vec{\eta}\mathbf{E}]\vec{\eta}] = 0;$$

$$(\vec{E}\vec{\eta}) = (4\pi i\sigma_{H}/\omega\epsilon)(\omega^{2}\epsilon/c^{2} - k^{2})^{-1} (\vec{\eta}\mathbf{k}) (\vec{k}[\vec{\eta}\mathbf{E}]).$$
(2)

It is thus a simple matter to derive a dispersion relation relating ω and k:

$$(k^2 - \omega^2 \epsilon/c^2)^2 - (4\pi\sigma_H/\omega)^2 (\omega^4/c^4 - \omega^2 k^2 \sin^2 \theta_k/c^2 \epsilon) = 0.$$
 (3)

Here θ_k is the angle between the vectors $\vec{\eta}$ and k; this angle specifies the wave propagation direction. From (3) we have

$$k^{2} = \frac{\omega^{2}}{c^{2}} \epsilon - \frac{1}{2} \left(\frac{4\pi\sigma_{H}}{c} \right)^{2} \frac{\sin^{2}\theta_{k}}{\epsilon} \pm \sqrt{\left(\frac{4\pi\sigma_{H}\omega}{c^{2}} \cos^{2}\theta_{k} \right)^{2} + \frac{1}{4} \left(\frac{4\pi\sigma_{H}}{c} \right)^{4} \frac{\sin^{4}\theta_{k}}{\epsilon^{2}}}. \tag{4}$$

We set that for any value of the angle θ_k , there is an undamped wave (a "plus-wave": an undamped helicon), which is an analog of an ordinary helicon, which propagates along the strong magnetic field in an uncompensated conductor.⁴ The absence of damping is not solely a consequence of the vanishing of the dissipative components of the conductivity (as discussed above); it is also a consequence of the fact that Landau damping (the direct absorption of wave energy by electrons) is possible only at $\omega > \omega_c$, since an electron which has absorbed energy must undergo a transition from a filled minigap to a vacant one.

The second wave, the "minus-wave," may be either exonentially damped (undergoing total internal reflection from the surface of the superlattice) or a propagating wave (similar to a wave in an insulator), depending on the relation between ω and $4\pi\sigma_H$.

Of particular interest are extremely low frequencies, with $\theta_k \neq 0$ (for definiteness, we set $\theta_k = \pi/2$):

$$k^{2} = \frac{\omega^{2}}{c^{2}} \epsilon - \frac{1}{2} \left(\frac{4\pi\sigma_{H}}{c} \right)^{2} \frac{1}{\epsilon} \pm \frac{1}{2} \left(\frac{4\pi\sigma_{H}}{c} \right)^{2} \frac{1}{\epsilon} . \tag{5}$$

We see that one of the waves is a totally ordinary wave $[k^2 = (\omega^2/c^2)\epsilon]$, while the other has an extremely unusual dispersion relation:

$$k^2 = \frac{\omega^2}{c^2} \epsilon - \left(\frac{4\pi\sigma_H}{c}\right)^2 \frac{1}{\epsilon} . \tag{6}$$

In other words, at $\omega \leqslant 4\pi\sigma_H/\epsilon$ we should see a sort of "Meissner effect": A quasistatic electromagnetic field does not penetrate into the superlattice [at $H=H_s$ (!)] even in the limit $\omega \to 0$. The polarization of the first wave is no different from that of a linearly polarized wave in an insulator (in particular, we have $\mathbf{H} \perp \mathbf{E}$), while the second wave has not only an usual dispersion but also a "strange" polarization: The magnetic field of the wave vanishes in the limit $\omega \to 0$ (at a fixed value of the electric field).

The existence of a "wave" with $k \neq 0$ at $\omega = 0$,

$$k^{2} = -\left(\frac{4\pi\sigma_{H}}{c}\right)^{2} \frac{\sin^{2}\theta_{k}}{\epsilon} , \quad \theta_{k} \neq 0, \tag{7}$$

undoubtedly reflects the fact that the motion of the charges in the superlattices is nondissipative at $H = H_s$, which makes superlattices similar to superconductors.

The field H does not have to be equal to H_s for an observation of the properties of superlattices which we have described here. The localization of electrons leads to the existence of a finite interval ΔH in which the dissipative components of the conductivity tensor of the superlattice will be zero.³

The undamped helicon described here should apparently propagate in Hall dielectrics, whose discovery was reported in Ref. 6.

Translated by Dave Parsons

¹⁾We are restricting the analysis to a zero temperature.

²⁾Tal'yanskii⁵ has studied quasistatic Hall oscillations in a sample of bounded dimensions.

¹H. L. Störmer, J. P. Eisenstein, A. C. Gossard, W. Wiegman, and K. Baldwin, Phys. Rev. Lett. 56, 85 (1986).

²V. M. Polyanovskii, Fiz. Tekh. Polyanovodn. 17, 1801 (1983) [Sov. Phys. Semicond. 17, 1150 (1983)].

³V. N. Lutskii, M. I. Kaganov, and A. Ya. Shik, Zh. Eksp. Teor. Fiz., 1986 (in press).

⁴O. V. Konstantinov and V. I. Perel', Zh. Eksp. Teor. Fiz. 38, 161 (1960) [Sov. Phys. JETP 11, 117 (1960)]; see also A. A. Abrikosov, Vvedenie v teoriyu normal'nykh metellov (Introduction to the Theory of Normal Metals), Nauka, Moscow, 1972, Ch. XI.

⁵V. I. Tal'yanskiĭ, Pis'ma Zh. Eksp. Teor. Fiz. 43, 96 (1986) [JETP Lett. 43, 127 (1986)].

⁶S. S. Murzin, Pis'ma Zh. Eksp. Teor. Fiz. 44, 45 (1986) [JETP Lett 44, 56 (1986)].