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S.V. Bulanov and A. S. Sakharov
Institute of General Physics, Academy of Sciences of the USSR

(Submitted 21 August 1986;
Pis’ma Zh. Eksp. Teor. Fiz. 44, No. 9, 421-423 (10 November 1986)

Particles can be accelerated without restriction by a potential wave with a wave
front in the form of a rotating surface. The particles execute multiple revolutions
along the azimuthal direction, making it possible to propose a more compact
acceleration system than those that have previously been considered. The scale
energies and energy of fast particles are found.

1. Acceleration of particles by a wave in a magnetic field parallel to the wave
front'~ is a fundamental phenomenon with broad applications. This mechanism is the
principle upon which the accelerator-serfotron, which makes use of strong laser and
microwave radiation fields, is based.? This mechanism is also cited in the discussion of
generation of fast particles at the wave fronts of collisionless shock waves under condi-
tions corresponding to those occurring in space.® Quintessentially, this mechanism can
be described as follows. In a coordinate system moving with the phase velocity of the
wave, v, , there arises an electric field ExS,, B /\|1 — ;2;}1 which is directed along the
wave front and which accelerates the particle. The ratio of displacement of the particle
along the front, Ay, to the distance it traverses along with the wave, Ax, in the limit
&>mc® is Ay/Ax =1 —B, /By For B, =v,,/c<1 the ratio Ap/Ax is large,
imposing considerable requirements on the size of the acceleration region and on the
uniformity of the wave amplitude and the magnetic field.

2. The requirement imposed on the size of the region in which the acceleration is
in the direction of the front is lifted if the front is of the same form as the rotation
surface,

1
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The Lagrangian for the motion along the surface (1) is
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The magnetic field has only the z component, the dot denotes the derivative with
respect to ¢, and the prime denotes the derivative with respect to the z coordinate. The
generalized momentum is conserved because of the ¢ symmetry,

543 0021-3640/86/210543-04$01.00 © 1987 American Institute of Physics 543



Y,

. e .
P, =r§h(7’¢ + @, (ron))= consts @, (Fpn) = _Tf Bz(r)rdr. )
mery, Jo

Here ¥ = 1/(1 — v?/¢?)"/? is the relativistic factor.

For the initial conditions we have z(0) =0, z(0) = 0; the trajectory lies in the
plane z =0, and as f— o, it is given by
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If B, = const, in the ultrarelativistic limit ¥ = e|B, |r,, /2\/1 — B 1., the trajectory has

the shape of a logarithmic spiral, ¢ = (/1 — 3 f,h /Bon)In r, and in the nonrelativistic
case it has the shape of an Archimedes spiral, ¢ = eB,r/mcv,.

3. If the deviation from the z = 0 plane is small, we can write, by virtue of (1), the
following expression for the motion along the z coordinate:
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where y(r) is given by expression (4). The stability of the motion is determined by the
sign of the curvature of the front in the ¢ = const plane (by the « sign). If the radius
of the curvature, R = 1/a, increases R = vy, we would have z(z) ot (€= %)% i the
ultrarelativistic limit as f— «. For a constant curvature (a>0) we would have
z(t) <exp(act /B,y ). For a <0 the trajectory z = 0 would be stable. It thus follows
that acceleration at the wave front with a positive curvature (« > 0) is not as effective
as acceleration at the front with a negative curvature (a <0).

Some particles can nevertheless acquire a considerable amount of energy over a
limited time, even when a >0. The energy will increase as the time the trajectory
remains near the z =0 plane is increased. This time in turn is determined by the
degree to which the initial values of z and z differ from zero. If the wave front has finite
dimensions along the z axis, of order z*, the particle, having a finite energy, will escape
from the acceleration region. This energy of the particle can be determined if we
assume that in the ultrarelativistic limit it is proportional to the time the particle

spends in the acceleration region. Hence, we can infer that & « (z*/z,)" ™" for

a«/vytand & = & In(z*/z,) for a = const, where &, = mc*B,,0,/2ac\1 — 2
—e¢|B,|R/2[T—B2,.

The differential energy spectrum of particles is proportional to |dz,/d& | by virtue
of the conservation of particle flux in the phase space.” We finally find that for ¢ = 1/
v,nf the spectrum is a power-law spectrum,

dN/d &= & =% | (6)
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and for @ = const (@ >0) the spectrum is an exponential spectrum
dN/d& « exp( -+ &/&,). (7

4, To find the condition under which a particle is held at the wave front, we must
substitute relations (4) into the » component of the equations of motion in the coordi-
nate system r = r,, (¢) near z=0:
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Here E(7,;) is the electric field. The last term describes the centrifugal-acceleration
component. From (8) it follows that the condition for unrestricted acceleration, simi-
lar to that found in Refs. 3-5 for a plane wave, for the cylindrical case is
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If B, = const, we will have E>B,/2(1 - %)""~

5. We assumed above that the magnetic lines of force are straight lines. In a
simple model describing the curvature of the lines of force we have B = B, e, — hze,,
where B, and % are constants, and B, /A4 represents the radius of curvature of the lines
of force: This effect leads to a modification of Eq. (5), in which a should be replaced
byad=a+4(1-F ;h )/B,. If & >0, the trajectory z = 0 is unstable and if & <0, the
trajectory is stable.

6. If the ultrarelativistic particle moves along the wave front of a cylindrical wave,
the rate of energy loss due to radiation will be & _ = — (¢*B2/6m?c*) (% /mc*)? (see
Ref. 8), and the rate at which the energy is acquired, by virtue of (4), will be

% . = (e|B, [vpn/24/1 — B %,). Equating the acceleration rate to the loss rate, we find
that the radiation loss limits the energy of fast particles to
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where r, = e¢?/mc* is the classical electron radius.
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