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A short solitary pulse is predicted to form in an extended amplifying medium with
a negative dispersion and a nonlinearity of the refractive index at a slight saturation
of the amplifying transition.

A study of solitons in dispersive media with a nonlinearity of the refractive index,
which are described by a nonlinear Schrodinger equation, is of interest from both the
general physical standpoint and the standpoint of applications. Such solitons were
predicted in Refs. | and 2 and were observed experimentally by Mollenauer ef a/.” in
1980. No less interesting is a study of soliton-like pulse propagation regimes in ampli-
fying media, in particular, in situations in which the amplification is nonlinear. As was
shown in Ref. 4, in the case of linear amplification the amplitude of a quasisoliton
increases without bound, its length decreases, and its energy increases exponentially.
In a system of this sort, solitary pulses cannot exist. As we will show below, a solitary
pulse may form in the case of a nonlinear amplification. Our purpose in the present
letter is to study solitary pulses of this sort.

We write the polarization of the medium as
e n
7y g ,
where the resonant part of the polarization, associated with the amplifying centers, is

P = Sp(da) and the operator d represents the dipole moment. The density matrix &
(in the interaction picture) is described by the equation
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where T is a relaxation operator, and V = — dE is the Hamiltonian of the interaction

of the atom with the field £. We assume that the populations of the resonant levels are
changed only slightly by the field E, In this case, by working from (1), making use of
the form of the relaxation operator I' (given in Ref. 5), and using perturbation theory,
we can easily find a solution & and thus #77, in which we consider the nonlinearity of
only lowest order. The nonresonant part of the polarization, 7", reflects the nonlin-
earity of the refractive index of the host and the linear loss in the medium. Substituting
Z into Maxwell’s equation, and making use of the lowest-order dispersion, we finally
find
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where we have introduced
g = C~ wny/2n0 .

Here C is the slowly varying amplitude of the field E; n, is a measure of the increment
in the refractive index proportional to |E |* (n = ny + n,|E |*); and z and ¢ are related
to the longitudinal coordinate z and the time ¢ by 2= —z/A and 1= [ — 2/A(3°k /
0w*)1V?[t — (Ok /Ow)z]. The left side of Eq. (2) is the same as the well-known non-
linear Schrddinger equation. The first term on the right side stems from the slight
saturation of the transition; the coefficient « is a measure of the “rate” at which the
amplifying transition is saturated; the second term on the right side is a measure of the
amplification in the medium; and #3 is the gain, which also incorporates the linear loss.
In the derivation of (2), account was taken of the fact that the pulse length is much
shorter than the relaxation time of the populations but much longer than the phase
relaxation time of the amplifying transition.

A direct substitution easily verifies that Eq. (2) has a solution corresponding to a
solitary wave:

g exp (ilkoT +(F /2 — 2 71)
q=— > (3)
ch B (F- 287 + az)
«

where £, is an arbitrary constant. It is easy to see that in the case @ = /8 = 0 expression
(3) becomes a one-soliton solution of the nonlinear Schrédinger equation.!” We can
show that in this medium only solitary pulses of the type in (3) can form. Let us
examine Eq. (2) in the case in which the coefficients @ and £ on the right side are
small:

a>ex, [ e€f.

In this case it is useful to apply a formalism analogous to that developed in Ref. 4 for
studying a perturbation of solitons of a nonlinear Schrodinger equation. We seek a
solution of Eq. (2) in the form

4 - .

q=q0,{, e)exp[i§(@ — o)+ i(0- 0o)], (4)
where

A L

z e v T ‘ or ’

& 1, 6,, and o, are functions of the slow coordinate ¢ = €Z; and & = ¢ + €(36,/
d¢ + a)/2. In the case € = 0 and ¢ = 7 sech (6 — 6,)), expression (4) is a one-soliton
solution of the nonlinear Schrodinger equation with arbitrary constants' &, 7, 8,, and
0, Transforming to the new variables { and 6, and moving the small terms to the right
side, we find from (2)
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We assume that § can be expanded in a series in €
q\‘.(er §_; €) = (;0(6, {) + eq“‘l (6, §) + .. . (6)

where §, = 7 sech (8 — @,). Using the notation §, = ¢, + ity;, and separating the
real and imaginary parts in (5), we find, in first order in €,

. R A of :
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It is not difficult to see that the operators Z and M are self-adjoint. Making use of the

identities L§,, =0 and Mg,=0, and noting that ¢, and #, are localized along 6, we
find

o

4 A N A
f &, ReFd0 =0, [ JolmFid6 = 0. (9)

From the first condition in (9) we find 98 /35 = 0; from the second we find the
dependence of the amplitude 7 on g:

no e 285

n =

(10)
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1t follows from this result that the pulse amplitude 7 tends toward S /a in the limit
P&~ . Integrating Egs. (7) and (8), we find

1
b= - e B0y * 0 ML —n(0 = o)thn(@ ~ o)) sechn (0 - 8o) .

(11)
Yy ==

to | 3

(B an)@ — 6o) sechn(@ - 6o).

Quasisteady solutions (11) hold in the region
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To determine the behavior of the parameter £6,, + o, we make use of an inte-
gral of motion—the energy of the pulse—which can be found from Eq. (2):

oo oo \

2 f lq!2dr‘=2flq42d'rﬁ~3;1q12d?: (13)
¢ <= S 2 S

Substituting 4 from (6) into this relation, we find, in first order in ¢,
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tends toward zero with increasing . To determine the motion of the parameter, we
make use of the { dependence of the correction to the energy of second order in €.
From (13) we find, in second order,

. - ¢
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where, as follows from (18), ¢, is determined by the following equation in second
order:
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2
Analysis of Eq. (17) and also of the equations for §; of higher orders shows that
quasisteady solutions are definitely valid in the region"

1 1

nl0 — 6o < —In—
2 €
At large values of §, we can ignore terms proportional to ¢, and ¢, on the right side of
(17). Carrying out the integration in (17), and substituting ¢, into (16), we find
2 j 2
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2, —a = (6], — )l e?F% Ing (e HD+-— (18)
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from which it follows that we have 6, — + a in the limit 5§ — o. Noting that &,
generates a correction to the pulse propagation velocity, we find that there are two
values of the propagation velocity for a solitary pulse (for a given value of £):

S T
vt =k'—£\/—~—>\> + ge/— — = v, + ae\/—

2 2

Either of these values may be reached, depending on the initial value 8, (£,).

We thus find that at large values of B the corrections ¢, and 9, like the correc-
tions of higher orders [see (10), (15), and (18)], tend toward zero, that we have
n—pB/a, and that an arbitrary distribution of the type in (4) converts into a solitary
pulse as in (3). Consequently, a solitary secant pulse (3) does in fact form in the
medium. Estimates for typical parameter values of single-mode fiber lightguides acti-
vated by Nd** ions, with an ion inversion density of 10'® cm ™2, show that for a gain
value lying between 0.27 X 1072 and 0.54 x 10™* cm ™! the energy density of a solitary
pulse as in (3) lies between 0.34 and 0.68 mJ/cm” (depending on the gain), and the
range of the pulse length 7, is correspondingly 7, = 2af ~'( — k"4 /2) ~"/?~2-20 ps.
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UCalculations® show that outside this region the condition for a quasisteady nature of the solutions is
violated. Nevertheless, under the condition 7|0 — 6,/ 2 1 In(e™ 'Y a solution can be found, since the nonlin-
ear term on the right side of (5) is small in this case (24]§]> S ¢€) and can be treated as a perturbation.
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