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A theory is derived for the nonlinear screening by a two-dimensional electron gas
of the potential of charged impurities distributed at random in a volume. This
theory is used to derive the position of the Fermi level and the width of the state-
density peak at the Landau level as functions of the electron density in a magnetic
field.

The state density of two-dimensional electrons in a magnetic field is usually re-
garded as consisting of a set of Landau levels separated from each other by #w, and
having a width I' €#w_. If this width is related to the short-range potential, the state
density falls off with increasing energy € (reckoned from the Landau level) in accor-
dance with exp( — €°/T'?) and is very small halfway between levels. In Refs. 1 and 2,
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the state density was studied by studying the activation energy for the conductivity as
a function of the degree of filling of Landau levels. It was found that the state density
between levels is considerably higher than predicted by the estimate above. The width
I" has recently been measured on the basis of luminescence spectra.® It has been found
that I" oscillates, increasing sharply with decreasing n = [n — Mn,|, where n is the
two-dimensional density of electrons, n, is the density corresponding to a complete
filling of one Landau level, and M is an integer. This behavior implies that the state
density is not of a one-electron nature. In this situation we should draw a distinction
between the state densities found by different methods.* While Refs. 1 and 2 dealt with
the quantity D(Ez) =dn/dE., where E. is the Fermi energy, in Ref. 3 the state
density was treated as a function of the energy at a fixed filling. When the electron-
electron interaction is taken into account, these state densities should not be the same.
Oscillations of I as a function of the filling were predicted in Ref. 5, where they were
attributed to a periodic change in the screeing radius. No analytic expressions for I'
were given in Ref. 5. Furthermore, the screening was assumed to be linear there,
although at small values of &# it is nonlinear, as we will show below.

Let us consider a two-dimensional electron gas in the z = 0 plane, surrounded by
charged centers which are distributed at random in a thick layer between the planes
z=d and z = — d. We will derive the functions D(E) and I"(8r) at small values of
Sn, finding results in qualitative agreement with experiment. We begin by considering
the case of strong magnetic fields, with #w_ > e”/xa, where e is the electron charge, « is
the dielectric constant, and a is the radius of the hydrogen-like state. In this case we
may assume that none of the completely filled Landau levels participates in the screen-
ing and that the density of screening carriers at 6u €n, is n. When the filling is slight,
the carriers are electrons, and when the filling is pronounced, they are holes. To
describe the screening of a random potential with a length scale L, we partition the
z = 0 plane into squares of size L X L, and we use each of these squares as the base of
an L X L XL cube. The fluctuation in the number of charges in each such cube is on

the order of VNL *, where N is the concentration of centers. If YNL * is smaller than
SnL 2, the number of electrons in an L X L square, i.e., if L> L., where

N
= (N

L= ——
c (6 n)2
a potential with a length scale L is screened by electrons. In the opposite case, L < L_,
screening does not occur. The length L, is therefore a nonlinear-screening radius.® The
amplitude of the random potential is determined by the scale L. and is given in order
of magnitude by

e  —— €N
VNL}=a——, (2)

KLc Kkdn

'=a

where « is a numerical coefficient. According to (2), I increases rapidly in the limit
6n—0. When I reaches a value on the order of fiw,, however, two Landau levels begin
to participate simultaneously in the screening, so that I stops increasing. This behav-
ior agrees qualitatively with the results of Ref. 3. A competing limitation on I arises
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when L, reaches d. Expressions (1) and (2) hold under the condition
NL?>1,6nL?*>1, i.e., under condition

(6n)®> < N2, (3)

Condition (3) places a large-6n limit on the range of applicability of (2). If nj <N ?,
expression (2) gives a correct estimate of I up to Sn=n,/2. Since the potential varies
smoothly, the width of a luminescence line should be smaller than that calculated
above.

To now calculate D(E), we note that the Fermi energy is shifted by an amount
on the order of I' from the unperturbed Landau level by fluctuations of the potential.
The Fermi energy reckoned from the nearest Landau level is therefore

e’N |

E.= , 4
FB/«Sn S

where [ is a numerical coefficient. We then find
e’N  (Bn)’k

. 5)
KEZ [ple*N (

D(E,)= = 1gl

n
dE
We see that D(E) increases rapidly with decreasing Er. It should be kept in mind,
however, that the range of applicability of (5) is limited by condition (3) and that the
condition 8n<ny/2 holds. The state density D (£, ) reaches a minimum at £, = fiw,/
2, and we have

Dlheo 2 =4 151 (6)

w = —_—
c 2
k(hw )

In a gap between Landau levels, the state density D(E ) is not exponentially small, as
it would be in the case of a short-range potentials. If charged centers were present only
in the z = 0 plane, we would find E, = ¢’ N, " In(N,/8n), where N, is the surface
concentration of centers.” The state density D(E) would then turn out to be expon-
entially small in the gap. For the state density D(E ) in the gap, the charged centers
in the volume thus play a greater role than that played by surface centers. The reason
is that centers in a layer of rapidly increasing thickness L, become involved in forming
the potential as dn decreases.

Up to this point, we have been discussing potential fluctuations with a length
scale greater than N ~!/3, There is, however, another factor which tends to lower the
Fermi level. This factor arises because of positive centers which by chance turn out to
lie within a distance z< N ~'/? from the z = O plane. If E <e*/ka, this component is on
the order of (4), while at E. > e°/«a it is small in comparison with (4). This compo-
nent is sharply suppressed if there is an undoped layer near z = 0.

The case which we have been discussing above is that with #iw, >e?, the case
which prevails in a material with a sufficiently small effective mass. In silicon metal-
insulator-semiconductor structures the inequality #iw, €e?/ka holds. We assume that
in this case the results derived above remain qualitatively correct, although the analy-
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sis becomes more complicated. At #w, €e*/ka, there are fluctuations which bind elec-
trons so strongly that the magnetic field has essentially no effect on their state. There
are, on the other hand, fluctuations in which the binding energy of the electrons is
small in comparison with #iw.. An analysis of these fluctuations is essentially analo-
gous to that above and leads to the same results.

The nonlinear-screening theory presented here can also be used to describe the
state of two-dimensional electrons in a zero magnetic field, provided that the total
density of electrons is so low that the inequality n*> <N ?, analogous to (3), holds. In
this case we need to replace n by n in (1) and (2). We then find the activation energy
for the electrical conductivity, €, to be

, e*N

€a=P - (7)
At values of N large enough to satisfy Na® > 1, a transition from an activated conduc-
tivity to a metallic conductivity occurs at a density n = #, = such that the condition
n® < N ? holds. To determine 7., we should equate (7) to the Fermi energy of a degen-

erate two-dimensional gas, 7#’n/m. As a result, we find 7, /N /a. At Na’<1, the
inequality n* < N ? initially breaks down with increasing n, and a Wigner crystal or a
Wigner liquid with a correlation energy greater than I' arises throughout the space.
The Wigner crystal or liquid will cause a linear screening along a distance n~ /2. In
this case the theory of the metal-insulator transition is more complicated.
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