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The properties of the low-energy region in quantum chromodynamics are
determined completely by gluon and quark condensates. The condition for the
existence of the region is that the gluon condensate must be positive.

The governing role played by the gluon and quark condensates (G2, ) and ()
in low energy phenomena in quantum chromodynamics (QCD) has been established
well by the sum rules.’ So far, however, we do not know the relationship between
condensates and the properties of the low-energy region in QCD, where processes
involving a breaking of chiral symmetry are important. In the present letter we show
that it is possible to introduce properties of the low-energy region which are deter-
mined unambiguously by condensates.

We consider a generating functional for the vacuum expectation values of the
quark currents, which also depends on the external fields ¥, and 4,,:

Z(V,A) = f(DG)ZW(V,A,G)expiWYM, (n
Z,(V,4,G) = [DYDYexp (i f Y& Yd*x), (2)

where G, is the gluon field, Wy,, is the action of the gluon field (including Faddeev-
Popov ghosts), and V, =V,,T,, where T, are anti-Hermitian generators of the
group of color and flavors. The total Dirac operator P for quarks is given by
P=iy* [0, +(V, +ys4,)®1. +gl,®G,], where 1, and 1 , are unit matrices in
the space of color and flavor.

In fermion integral (2) we single out the relativistically invariant low-energy
region L of the integration over quarks, which satisfies the following conditions: (a)
The physical region L is determined by the circumstance that nonperturbative, chiral-
noninvariant fluctuations of quarks characterized by a condensate (%ﬁ) are dominant
in it; (b) the region L is gauge-invariant, and the vector isospin currents are con-
served; (c) the region L is stable with respect to fluctuations of the magnitude of the
quark condensate. We go over into Euclidean space in (1) and (2), and we consider
the eigenvalues of K of the total Dirac operator: By, = Ki/x,,, where a is the index
specifying the polarization and internal degrees of freedom. We introduce two param-
eters with the dimensionality of a mass, A and M, and we define the region L by the
relation

— A+ M K A+M, 0SM< A 3)
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Both A and M are invariant under vector gauge and local chiral transformations of
both the flavor group SU(2) and the color group. In this approximation, the conden-
sate is (Yy) ~1, ®1,.

In the presence of external fields, the quark condensate is equal to the vacuum
value of the quark density, averaged over the volume. In Euclidean space, for massless
quarks, we have

(IITW)E =_ fd4K&K”{0(A+ M-K)-0(A-M-K)} = A2M + —), (4)

7!'2

where we have made use of the eigenfunction basis of the total Dirac operator. In
Minkowski space (M— — iM) we have

T __.-—._._ 2 _— —
(YY) i (AM ) 5

where N, is the number of colors.

The size of the quark condensate varies under quark fluctuations #(x)
—exp[ — o(x) ]1¢(x) with a scalar field o = 0, + 7°c,, which is generally realized in
both singlet and associated representations of the flavor group. If the region L is to be
stable, such fluctuations must be suppressed. Whether they can be suppressed is deter-
mined by the effective action W 4 (o) for the field o, which is generated by a confor-
mal anomaly. Here the gluons play a governing role. In calculating W (o) we ac-
cordingly assume ¥, = 4,, = 0, so that we have B = i(# + g&). In addition to B, we
need to also consider the conformally transformed Dirac operator B, = e’ Be®. We
denote the corresponding fermion integrals in (2) by Z,(G,1) and Z,(G,0). The
effective action Wz (o) is then given by the following expressions (in Euclidean
space):

exp(~-W, (@)= Z,(G 1Z;(G,o0) (6)
1

W, (0= j(;dsfd4x2tr{o(x)<x|9(A2—@B;o—M)z)Ix)}. (7)

i d

In deriving (7), we made use of a finite-mode regularization.> Expression (7) was
found through a conformal anomaly integration.

To determine the conditions for the stability of the region L under a variation of
the quark condensate, it is sufficient to consider static fields o = ¢, = const and to
examine the effective potential ¥ (o, ). Evaluating (7) in Euclidean space, and then
transforming to Minkowski space, we find the following expression for the effective
potential:

V(o) = 16”2{1\[“ € ©—16AM>— A — MY+ @200/3):Z(G:v )2, (8)

which contains a linear gluon invariant. Here N, is the number of flavors. Taking an
average over the gluon fields in our basic functional (1) at large values of N, leads to a

8 JETP Lett., Vol. 43, No. 1, 10 January 1986 Andrianov et al. 8

Ao




condensate (G}, ) as the leading term for G, in (8). Low-energy region (3) is stable
with respect to fluctuations of the condensate (i) if the effective potential has a
minimum at o, =0, i.e., in the absence of fluctuations. The condition for an extre-
mum of the effective potential generates a relationship between the parameters A and
M and the gluon condensate:

6N, (6A’M? — A* — M*) = (g2 Z(G° )*). (9
a W

The extremum of the effective potential in the case . = 0 is a minimum if the gluon
condensate is positive:

(2%, 1) >0. (10)

We thus see that we cannot speak in terms of a low-energy region L in QCD if the
gluon condensate is negative or zero. Expressions (5) and (9) describe the quark and
gluon condensates in terms of the parameters A and M of the low-energy region. This
region is thus determined unambiguously by the condensates.

The parameters A and M (the asymmetry of the spectrum) also determine the
seed constant for pion decay in the chiral Lagrangian®: F2 = (N, /47%)(A* — M?).
Taking the ‘chiral logarithms into account, we find that we would need F, = 88 MeV
for F, =93 MeV.

Choosing the parameter values A =450 MeV and M = 320 MeV, we find, with
F,=88 MeV and () = — (200 MeV)?, a completely reasonable value for the
gluon condensate: (g°/47°)(2(GL,)?) = (415 MeV)*.
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