Metal-insulator transition in the anisotropy parameter
in the case of a slight disorder
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Numerical calculations in a model with a weak impurity potential (kz/>1) reveal
the point of a metal-insulator transition as the degree of quasi-one-dimensionality
is increased.

At zero temperature in the one-dimensional (1D) case, an electron will be local-
ized by an arbitrarily weak random potential if the interelectron interaction can be
ignored. We thus run into the important question of whether a weak 1D localization
(kI>1) will be disrupted when account is taken of the small probability (¢, ) that an
electron will hop from one chain to another in the given quasi-one-dimensional (Q 1D)
compound. Whenever a result associated with 1D localization is used to describe a real
physical phenomenon, it is actually being assumed implicitly that the phenomenon of
weak 1D localization is stable with respect to the incorporation of a small probability
t,. On the other hand, if the anisotropy (#,/t,), is not pronounced, the condition
krl>1 corresponds to a metallic phase. Consequently, if this assumption is correct,
there must exist a point (¢, ). <?, at which a metal-insulator transition occurs. This
transition was studied in Ref. 1 by a so-called self-consistent approach? to the theory
of localization, and the value 2(¢,). = 0.31/7, was derived, where 7 =1/v, is the
kinetic mean free time. Although the estimate (¢, ), ~ 1/7 seems plausible,® the very
conclusion that there exists a transition at a finite 7, apparently cannot be assumed
proved, since the method? used in Ref. 1 is based on assumptions whose validity has
not yet been established (a certain subset of the complete set of diagrams was summed
in Ref. 2; the terms that were discarded were of the same order of magnitude as those
that were retained).

In the present letter we report numerical calculations which provide unambigu-
ous evidence in favor of a transition at

(t), = 0.08/7 (1

under conditions such that we have(¢, ). <¢.

We consider the standard model of a disordered Q 1D metal (£, =1, #,<1) ona
simple cubic lattice:

€= Up oy Wain = Ynn -1 ¥ Vo ns1 T 0 Z Vnag (2)

where n = (n, ,n,);n,,n,,n, are integers; n + a corresponds to the four nearest neigh-
bors of the vector n; and the random potential U is specified independently at each site
by means of the distribution function P(U) = /W at |U|< W /2 and P(U) =0 at
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|U|> W /2. We fix the energy at the center of the zone (¢ = 0), and we consider only
two values of the disorder: W = 3.5 and W =3.5/v2. In each of these cases, the
disorder can be regarded as weak, since the scale length over which the 1D localization
[#(2) ~exp( — |z|/&,p) ] develops is large, &, = 105/ W2,

Pichard and Sarma* have numerically determined the point of the Anderson
transition in the isotropic case (¢, = 1) along the scale of the parameter W. Their
result is W, = 19. The method which they used® can be summarized as follows: The
localization length £ is first calculated in a long wire with a cross section ¥ XN, and
then the question of whether 3D localization has occurred is answered by analyzing
the function £(V). Using the same method, we have studied the transition in the
anisotropy parameter ¢, under conditions of a slight disorder. The result in (1) means
that in the (W,t,) plane there is a line which separates the metallic and insulating
phases. The equation of this line at #, €1 is ¢, (3.5/#)% = 0.08.

The localization length £(NV) is calculated for samples with the shape of a long
bar (L 23X 10*) with a cross section N XN. The results are shown in Fig. 1, where
the curves are labeled with the value of the parameter A = 50¢, (3.5/W)?, and the
crosses and the squares represent W = 3.5 and W = 3.5/v2’, respectively. Obviously,
the line which goes through the origin plays a very important role; this line corre-
sponds to the value 4, = 4. The region 4>4,, where the localization length remains
larger than the transverse dimension in the limit N—» o0, should be identified with the
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metallic phase. At 4 <A, on the other hand, the ratio £(N)/N tends toward zero in
the limit N> 1, as is characteristic of an insulating phase. It is natural to suggest that at
A <A, the curves of £, (N) approach asymptotic values &, (0 ), but our calculations
are not accurate enough for a determination of the exponent in the function £, ()
~ (4, —A4)".

Let us briefly outline the method used to calculate £(N). For the 2N *-component
vector

¢n,L +1 ]
¢,n,L

we find the recurrence relation (L) = m(L)P(L — 1) from (2), where the random
symplectic matrix m(L) is

d(L) =[

H(L)] -1
Hn’n:(L)=(G—Un,L)Sn’n,—tlz(SnJra’n,_ (4)
a
We thus find
®L)= ML) P(0), (5)
M(L) =ﬁ mfi). (6)
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The localization -of the wave function is obviously related to the rate of increase or
decrease of (L) with increasing L, while the change in $(L) is determined by the
behavior of the eigenvalues of symplectic matrix (6). Half of the eigenvalues of this
matrix, 4, (j=1,.,.N 2), grow exponentially [4; = exp(y;L) ], while the remainder
decay [Ay:,; = 1/A4; =exp(—y;L)]. The Lyapunov indices 0<y,<...<7, are
self-averaging quantities in the limit LZ— . The vector ®(0) can be expanded in the
eigenvectors of matrix (6), each of which decreases or increases in accordance with its
own exponential function. In this manner, we obtain a hierarchy of scales &, = 1/7;, as
was pointed out in Refs. 3 and 5. A special role is played by the maximum scale,
£, = 1/y,, which should be identified with the localization length £(N).

Figure 2 shows a typical plot of the Lyapunov indices y; versus #, (we have
chosen the parameter values N =3 and W = 3.5). At ¢, =0 (the 1D case) there is a
level degeneracy: ¥, = 1/4l, This degeneracy is lifted at ¢, #0. The average of the
positive Lyapunov indices is expressed at the given ¢, in terms of the corresponding
mean free path:

1N
_ = -1
(y? N2le Y= @) (7

Shown at the right in Fig. 2 are the asymptotic values of the Lyapunov indices:
2j
N2+l

Y, W), €1 K g) = y) 8)

Expressions (7) and (8) were derived in Refs. 3 and 5.
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