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A theory is proposed for the oscillatory behavior of spin-density waves in
(TMTSF), X organic superconductors in strong magnetic fields.

Organic conductors with the chemical formula (TMTSF),X have attracted con-
siderable interest in recent years (see the reviews by Jerome and Schulz' and
Gor’kov.? In these materials, a superconductivity competes with a spin-density wave.
In addition to the “ordinary” spin-density wave, which is commensurate with the
crystal structure, an “extraordinary” spin-density wave forms in a strong magnetic
field after the destruction of superconductivity. In this event, oscillations are observed
in the resistance and, apparently, the phase-transition temperature. We have recently
proposed a theory® according to which the existence of superconductivity in these
compounds stems from the formation of a certain crystalline superstructure which
causes neighboring conducting chains to become nonequivalent. In the present letter
we show that the presence of a structure of this sort also explains the behavior in
strong magnetic fields.

We consider a layer of chains spaces at a distance . We assume that there is a
crystal field which oscillates along the b axis with a period of 2b [this is the structure
of (TMTSF),ClO, in the superconducting R phase). If the integral representing hop-
ping between chains, ¢, is far smaller than the potential difference between neighboring
chains, «, the Fermi momentum of the electrons will depend on the chain index n: k ‘F""
= Kkp + ( — 1)"'k/2%v;, where v, is the Fermi velocity. Beats between the different
k (™ create a large period / = 27, /k along the chains in the system. Let us assume
that a magnetic field H is imposed in the direction perpendicular to the layer. We
would expect that when the magnetic flux through the natural cell / X b is comparable
to the quantum of flux, ¢, there will be distinctive features in the behavior of the
system. In the present letter we show that the temperature at which a spin-density
wave forms rises in a magnetic field which satisfies the condition

Hbl =20 /M, M=2m+1, (1)

where M is an odd number.

Wesset i = v, = 7/k, = 1. We introduce the operators l./',,’a (x), which annihilate
electrons with momenta near ak;, @ = +, at the point x in chain n. For simplicity,
we will omit the spin indices, since our theory describes spin- and charge-density
waves equally well. In the presence of a magnetic field and a crystalline superstructure,
it is convenient to introduce the gauge transformation

~

gbn' M%) = l//n'a(x) exp[aik(}/ x + inbex ]. (2)
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The Hamiltonian of the system then becomes

A -~

A o~/
H= 2 Ho(d/:,ai ¥y o)

n,a=zx% 1
* a Ei l,pf: + ldx[tn,p,a(x) ;+p, ofX) ‘l/n’a(X)“' Ha.]; (3)
. . e
t,,’p'a(x}= texp[—ipgx + ia(—D'kx], q = —bH. (4)

4

Here ﬁIO is the Hamiltonian of the one-dimensional interacting electrons.* We wish to
call attention to the fact that the influence of the magnetic field and the crystalline
superstructure is seen only in the oscillatory nature of hopping integrals (4). The
interactions in H,, are assumed to be of such a nature that there are no gaps in the spin
and charge channels. In this case, according to the results found in solutions of one-
dimensioAnaI models,* the correlation function for two electrons calculated with the
help of H, is (within logarithmic dependences)

~ ~ ~ 4 ~ o+
Kofzy, 23, 23, 24) = lf”,,’JZl/ U, (22) Yy o (23) ¥, _ (24) )0

const

S(21~ 23] (2, 24) Is(zy = 23) 5 (25— 24) | 'F

$(zy ~24)s(zy~ 23)
X ; (5)
S(zy = z3)s(z3— 24 )

s(z) = sh(naTz)/ T, z = x + i7,

where T'is the temperature, and 7 is the Matsubara time. The indices v and 7, can be
regarded as phenomenological constants. In the case of a weak interaction of the type
g, we would have v = — g,/2m, 7, = 1 + ( g,/27)” (Ref. 4). Working from the ex-
perimental data, we consider the case v>0, which corresponds to superconducting
ordering in the absence of a magnetic field.?

We consider a spin-density wave characterized by an anomalous Green’s function
0,(z,—2z,) = (¥, . (z,)><1~pn++p,‘ (z,)), p= + 1, which describes the pairing of
particles in adjacent chains. The transition temperature T, is determined by the diver-
gence of the corresponding correlation function. We will calculate this function, treat-
ing the hopping amplitude ¢ in Hamiltonian (3) as a perturbation, and using the
ladder approximation in ¢ (Ref. 3). Figure 1 shows a typical diagram of the series. The
squares with diagonals represent correlation functions (5) for electrons in chains #,
n 4+ 1; each line represents a factor from (5), which depends on the corresponding
difference in coordinates; the isolated lines at the ends of the diagram correspond to
single-particle Green’s functions; the dashed lines represent the hopping integral ¢; and
the wavy and broken lines represent, in accordance with (4), the incoming and outgo-
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FIG. 1.

ing momenta ¢ — k and g + «. The results are determined primarily by those regions
of the integration variables in which the large momenta ~«, g> T cross a minimum
number of lines of the diagram, while the integrals over loops converge at small mo-
menta. In the coordinate representation, this behavior means that the points of the
diagram between which the momenta ~g, « pass can be effectively contracted to a
single point because of the rapid convergence of integrals of the product of an oscillat-
ing function and a decreasing function. The subsequent integration contains no oscilla-
tory functions and is cut off at distances ~ 7 ~'. In the case v > 0, the following pairs
of points in Fig. 2 contract: (z,,z5) and (z,,z;). Momenta g 4 k pass between them.
Evaluating the integrals, we find that the series diverges at the temperature

& 4 S8
TC(O)IQ)NLW ., BE2-2np,+v >0, 2-v>0. (6)

To find the transition temperature T'{" for g = &, it is sufficient to cut off the increase
in T”(g) in (6) at |g —k|~T 2 (q):

1

7 ~ C ot T EV g,
0 (2K)2—v

251;' (2-v)

" _ K B(8+28L)
TC(O) (q = 0)<_T_)

3d

> ﬂF= 2_ an (7)

where T, ~ (£)" 7 is the effective transverse width of the one-electron band.

An analogous study of higher-order diagrams shows that, in addition to the main
resonance at ¢ = k, there are narrow peaks T'{™ against the background of (6) at
g=x/C2m +1): T /T ~(T,,/k)", where a =45, m/( B+ 2f:).

A theory of magnetic oscillations in (TMTSF),X compounds was first offered in
Refs. 5 and 2. The effect with which we are concerned here differs in physical nature.
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The case k = 0 was studied in Refs. 5 and 2; the effect is based on a semiclassical
description of the magnetic field and is determined by the Fermi surface (by the
absence of nesting). Our model, in contrast, assumes a strong nonequivalence
(k> T,,) of neighboring chains, describes quantum commensurability effects in strong
magnetic fields, and predicts /~x~". If we apply the theory of Refs. 5 and 2 to our
model, we find I~ (T%,) !, where T%,, the transverse width of the single-particle
band, is equal to 7%, = T'},/« in the given model.> Methodologically, the Gor’kov-
Lebed’ theory and the theory set forth in this paper have additional regions of applica-
bility in the magnetic field: ¢ S 7%, and ¢> T%,. We suggest that these two mecha-
nisms describe respectively the “slow” (with a frequency H, =23 T) and “fast” (275
T) oscillations which have been observed® in the R phase of (TMTSF),ClO,.

Comparing (1) with experimental data,®’ we find that for oscillations of the
magnetoresistance in (TMTSF),PF, under pressure we have / = 344 A, while for the
“fast” oscillations in (TMTSF),ClO, we have / = 98 A. Using the simple band for-

mula v, = t,a/\2#, t, =025 eV, and [ = 3.7 A for an estimate, we find k¥ = 12 meV
and « = 40 meV, respectively.
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