Friedel oscillations and Ruderman-Kittel interaction
in disordered conductors

A. Yu. Zyuzin and B. Z. Spivak
A. F. Igffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad

(Submitted 26 December 1985)
Pis’ma Zh. Eksp. Teor. Fiz. 43, No. 4, 185-187 (25 February 1986)

The temperature of the spin-glass phase transition cannot be found from the de
Gennes-Mattis formula [P. G. de Gennes, J. Phys. Radium 23, 630 (1962); D. C.
Mattis, Theory of Magnetism, New York, 1965] for the Ruderman-Kittel
interaction of localized spins in a disordered metal. The temperature of the spin-
glass phase transition depends weakly on the concentration of nonmagnetic
impurities. The spin-orbit scattering by nonmagnetic impurities gives rise to a non-
Heisenberg interaction of the Dzyaloshinskii-Mori type between localized spins.

1. The existence of a Fermi surface in a metal or a heavily doped semiconductor is
known to cause the magnitude of the exchange interaction of two spins, I(r), separat-
ed by a distance r, to oscillate in accordance with!
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Here J is the constant of the interaction of the impurity spin with the conduction
electrons, v, is the state density at the Fermi level, p, is the Fermi momentum,
K, (r,r') is the spin susceptibility of the metal, given by
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o’ are the Pauli matrices, w = 77(2n + 1), G5 (r,r ;) is the electron Green’s func-
tion, @ and S are spin indices, and T is the temperature.

The oscillations in (1) are a direct consequence of the Friedel oscillations of the
electron wave functions which arise when a localized spin is inserted into a system.
Another consequence of the Friedel oscillations is the fact that the electric field of the
impurity in a metal is screened at large » in accordance with

cos2ppr 3
Po(r) ~ —3L . (3)
r

de Gennes” and Mattis® have shown that in a slightly disordered metal expres-
sions (2) and (3) become modified at » >/ (/ is the electron mean free path in the case
of scattering by nonmagnetic impurities, pr/>#):

K, 0=K,"" 5 @ =gr-"". (4)

The Friedel oscillations are therefore damped exponentially over the mean free path /.
The superior bar in (4) means an average over random realizations of the impurity
potential. We will be making use of (4) in several places below to calculate the transi-
tion temperature T, in spin glasses*:

234 0021-3640/86/040234-04$01.00 © 1986 American Institute of Physics 234



r
PR
T_~__J2Vo_l_l [ (43)

¢ 4r r}
(r, is the average distance between paramagnetic impurities). We will also be using
(4) in calculations on the structures of amorphous and liquid metals.> Experiments on
the / dependence of T, (Ref. 6) are usually also discussed with reference to (4) and
(4a).

We can show that it is incorrect to use (4) and (4a) for these purposes. A
qualitative explanation of this fact can be seen in the example of the Ruderman—Kittel
interaction. The insertion of one paramagnetic center at the point » = 0 in a pure metal
leads to osciliations of the electron wave functions and thus oscillations of the magne-
tization at the point r: My(r) ~cos 2 p- #/7°. In a disordered metal, this expression
becomes modified: M(r) ~A(r)r 2 cos[2 py r + 5(r)], where A(r) is a smooth but
otherwise random function, and &(r) is the phase shift which is associated with the
scattering of an electron by impurities, This shift becomes nearly random at r> /.
When we take an average over the realizations of the random potential at r>/, i.e,,
over the random phase shifts §(r), we find (4).

It is clear, however, that all of the phenomena listed above are determined by the
typical values of I(r), regardless of its sign. In a spin glass, e.g., T, is determined by
the quantity (K2, (r)) /2. It is also obvious that we have (K 2(r))'/?~ (M?Z(r))'/?
~77? and that this quantity does not contain an exponentially small parameter. The
estimate T, =J*v,/r} in spin glasses which we find on the basis of these arguments
differs by a factor exp(r,/)>1 from the standard estimate in (4a) (Refs. 4 and 6).

2. To find K2 (r), we need to sum the sequence of Feynman diagrams shown in
Fig. 1. The solid lines here correspond to electron propagators, while the dashed lines
correspond to scattering by impurities. Similar diagrams are summed in a study of
mesoscopic fluctuations in small samples.”®

Here are the results for the three-dimensional case at T = 0:
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FIG. 1.
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Here L, =Dr,,, D is the electron diffusion coefficient, 7, is the scale time for the
spin-orbit scattering of electrons by nonmagnetic impurities. At ¥>L, =D /T we
have m~v§ r~%exp( — 2r/Ly). In the limiting cases /<r<L,, <L, and Ly
>r>L,,, the quantity m~r_6 has a universal form, independent of /. Further-

more, at r>L,, the quantity K2 (7) does not depend on the spin indices i and m.
This result tmeans that at 7> L,, the exchange between localized spins becomes aniso-
tropic and is described by a random non-Heisenberg matrix of the Dzyaloshinskii—
Mori type. This fact has already been used in explaining the / dependence of the
hysteresis in the magnetization of spin glasses. The calculations which have been car-
ried out, however, have been restricted to first order in® r// < 1.

The effect of an interaction between electrons on the value of X, (r) was studied
in Ref. 10. The results found there are higher than those found from (4) but parame-
trically similar than those found from (5).

It follows from (1) and (5) that in the intermediate region, r~ 1, the coefficient
of r~% in the expression for K 2(r) changes by a factor of three, indicating an increase
in the fluctuations of 4 (r). We do not rule out the possibility that a 50% decrease in
T, in CuMn with decreasing / (Ref. 6) is a consequence of precisely this circumstance.
The interpretation in Ref. 6 on the basis of (4a) leads to values 4.5 times smaller than
those that follow from the conductivity.

Calculations analogous to those in (5) lead to

(PN~ w > (7

Expressions (5) and (7) do not depend on / at large 7, and they are valid in order

of magnitude up to pr/~#. All of the effects described here stem from the circum-

stance that K, (r) is not self-averaging at > 1. A situation analogous to that de-

scribed above arises in a study of the fluctuations of the conductivity o(r,r’') where we
have
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while we also have!!
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The latter circumstance must be taken into account in calculating the superfluid
current in superconducting alloys.'!
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