RKKY interaction in metals with impurities
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The magnitude of the RKKY interaction in a metal with impurities is derived. The
impurities are shown to cause a random phase shift of the RKKY interaction, but
they do not cause an exponential decay of this interaction over distances on the
order of the electron mean free path. This decay is found only for the interaction
averaged over impurity configurations. However, it is meaningless to use such an
average because of the pronounced dispersion of the interaction in the region in
which the exponential factor is small.

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized
magnetic moments is known to fall off with increasing distance (r) between the mag-
netic moments, in proportion to r—>. Furthermore, at k7> 1 the interaction is propor-
tional to cos(2k,r), i.e., is oscillatory (kj is the Fermi momentum). There is a widely
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held opinion (Refs. 2 and 3, for example), dating back to a paper by de Gennes,' that
in metals with impurities the magnitude of this interaction contains an additional
factor exp( — r/I) and that it decays exponentially over a distance r greater than the
mean free path (/) of the conduction electrons. In the present letter we show that this
decay occurs only as a result of an averaging of the interaction over various impurity
configurations, while the unaveraged RKKY interaction does not have an exponential
factor. It contains only a random phase shift; i.e., it is given by

J(x,x") ~ (kgr) 3cos(kpr + ¢), r=Ix—x"I > kp', (1)

where the phase ¢ depends on x, x’, and the impurity configuration.

The magnitude of the RKKY interaction is determined by the susceptibility
y(x,x') of the electron gas*:

J(x X )= I*X(xx)/g%u}, (2)

where g is the Landé factor, p is the Bohr magneton, and I is the exchange integral,
whose coordinate dependence we will be ignoring below. Expression (2) reflects the
circumstance that the system loses its translational invariance in the presence of im-
purities, and the susceptibility y(x,x’) is a function of both of the coordinates x and x'.
The susceptibility can be expressed in terms of the one-electron Green’s functions G
found by taking into account the scattering of electrons by impurities and in the
temperature technique:

X(,x") = gugl 2 G x,x), = aTQn+1), 3

where T is the temperature.

In finding the Green’s function we assume that the potential, U(x), for the scat-
tering by a given impurity distribution is a semiclassical potential. Taking this ap-
proach, we can find an explicit expression for the phase shift ¢, although it is clear that
expression (1) for the RKKY interaction holds even for a more general form of the
random potential U(x).

Semiclassical Green’s functions for electrons were found in Refs. 5 and 6. They
are equal to the sum of the contributions of the classical trajectories (I';) of a particle
with an energy € in a given potential U(x) connecting the points x and x’. Among
these trajectories there are some that connect these points directly, while there are also
oscillatory trajectories, on which a particle undergoes one or several reflections from a
turning point. The contribution from a straight trajectory I',,, whose length vanishes in
the limit x—x’, is (m is the mass of an electron)

G (x,x') ~ ——1—, exp(l—So {U(x)}),
€ lx—x'| h

(4)

S0=jI"ds\/2m[e— Ux)1-

The arc length of the oscillatory trajectory remains finite in the limit x—x’, and the
magnitude of the action §; undergoes pronounced fluctuations on this trajectory upon
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a change in the impurity configuration. We will therefore be ignoring the contribution
of such oscillatory trajectories to the Green’s function, which is determined entirely by
expression (4). In the case of weak potential, |[U(x)|<e, there are no oscillatory
trajectories at all.

The temperature Green’s function of the electrons in a metal, G, is found
through an analytic continuation € =y + iw of the semiclassical Green’s function in
(4), where g is the chemical potential. When the magnitude of the potential U(x), for
scattering by impurities, is small, |U(x)|<u, we can expand the action S, in (4) in
U(x). Ignoring the deviations of the trajectory T', from a rectilinear trajectory (the
corresponding corrections are on the order of U?), and substituting Green’s function
(4) into (3), we find, in first order in U,

N(O)
16ar
where n is a unit vector connecting the points x and x’, and v, is the Fermi velocity.

Expression (5) leads to result (1) for the magnitude of the RKKY interaction. Aver-
aging it over impurity configurations, we find

(J(x, X)) ~ (kpr)™>cos(2kgr)exp (—r/l), r> k. (6)

2
cos(2kgr+ ¢), ¢ = — fdsU(x+ns), (5)
L]

X (x,x") =
th

Here £ is the correlation radius of the random potential U(x), whose correlation
function g(x — x') = (U(x)U(x’)) determines the mean free path:
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In the case £>/, we would generally have to take into account the non-Gaussian nature
of the fluctuations of the potential U(x) in order to find /. In the case />£, and also in
the case of an ordinary diffusive motion of electrons in the field of the random Gaus-
sian potential U(x), we find the following expression for the dispersion of the RKKY

interaction:
(P, X)) = (T, X)) = 2h2 (/DT %, X)) (8)
We see from (8) that in the region r>/, where the exponential factor in (6) is

small, the fluctuations J(x,x') become extremely .large, and a description of the
RKKY interaction exclusively in terms of its mean value becomes meaningless.

In summary, in metals containing static impurities the RKKY interaction falls off
over distance only as 72, but impurities do cause the phase of the oscillations of the
RKKY interaction to become random. This effect intensifies the tendency toward the
formation of an ordering of the spin-glass type in metals with a random arrangement
of localized magnetic moments. Even in the case of a regular arrangement of magnetic
moments, the presence of nonmagnetic impurities makes the RKKY interaction a
random interaction and thus raises the possibility of a spin-glass ordering.

We wish to thank V. L. Ginsburg and D. A. Kirzhnits for a useful discussion of
this study.
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