Displacement instabilities in classical Coulomb systems
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Relaxation transverse modes are found in the long-wave limit for conducting
systems. In conductors lacking a symmetry center, these modes are unstable and
give rise to displacement superstructures. This result helps explain the
experimental data on several known superionic crystals.

Electrical phenomena in “poor” conductors (in the terminology of Ref. 1), e.g.,
liquid and solid electrolytes, are described on the basis of Maxwell’s equations’
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rotE= 0, (1)
divD=0 (2)

for the electric field E and the electric displacement D. These phenomena can also be
described by constitutive equations, which can be written in the following form in the
simplest case of an isotropic conductor in the absence of a spatial dispersion:

__a_._D = € .a_E_ + 4nj’ (3)
ot ® at
j = dE. 4

Equation (3) has a simple meaning. Substituting the expression for the conduction
current j from Ohm’s law (4) into (3), writing D, E~exp( — iwt), i.e., introducing
the frequency w, and using the definition D(w) = €(w)E(w), we find
4nao 5
€)= e, +i— - )
w

At low frequencies w, Eq. (5) corresponds to the ordinary expression for the frequen-
cy-dependent dielectric constant of a poor conductor,' characterized by a conductivity
o and a “high-frequency” dielectric constant €.

To take into account the spatial dispersion in an isotropic, centrally symmetric
conductor, we should add to the right side of (4) the expression

1
~ (B1graddivE + Byrotrot D)
n

with parameter values 3, >0, 5,>0 (in the Debye-Hiickel approximation we would
have B, =47 R %, where R, is the screening radius). In a conductor without an
inversion center (e.g., an electrolytic solution containing chiral molecules), we should
also add a term?®

—~ yrotD, (6)

where ¥ is a parameter. In this case the dielectric tensor (e, is the Levi-Civita
symbol)

: k.k. k.k.
eij(kaw) = eT(k9 (4))(5!] - J;%“) + GL (k, “")—1;2]' + ieG(k,w)el.].m -—f y
which appears in the relation
D,'k(‘-*’) = e,’j(ks w )Ejk(“’) >
has a longitudinal component?
iw — (4na + 1 k%) /e
iw — B1k*/ e

a transverse component

e, (k) =¢, &)

iw — 4mafe_ t vk — k>
= + = " ®
ep,w) = €. (0, + Q_J, Q. 2iw + vk fok?)
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and a gyrotropic component €; = (k,w) =¢€_ (Q, — Q_); here k is the wave vector.
If retardation effects are ignored, the eigenmodes are determined by

e kw )= 0, er'(kwp)=0. (9

From (7) and (9) we find the overdamped longitudinal Coulomb mode*
w, = —i(4mo/e, )X (1 + REk?).

However, we see from (8) and (9) that in the presence of a gyrotropy one of the
transverse modes (at &, this would be @, = i|ylk) is a growing mode. This circum-
stance ultimately leads to the appearance in a gyrotropic conductor of a displacement
superstructure [the latter can be stabilized by adding nonlénear terms to (4) and (6)1].

An analogous situation arises in conductors of cubic classes O and T. The latter,
however (and also the T, class in a cubic system), allows a piezoelectric effect, which
leads at small k£ to yet another instability, of a completely different kind. Omitting a
detailed derivation (which will be given in a detailed paper), we note that in this case
the dispersion relation for transverse modes which are propagating along, for example,
a fourfold axis contains at small ¥ an unstable root

wp ~ kY3 (10)

which ultimately gives rise to a displacement superstructure in conducting piezoelec-
tric materials.

There are some experimental results which suggest the presence of displacement
superstructures in ionic conductors lacking an inversion center (not only cubic con-
ductors).

1) Superionic a-RbAg,I;, class O. NMR data® indicate that the symmetry point
group of Rb sites is lower than C;. On the other hand, Geller et al.® have examined the
possibility that the rubidium ions occupy the positions assigned to them by the O
group only on the average; they are actually displaced slightly from their ideal posi-
tions.

2) Superionic a-Ag,Hgl,, class S,. According to x-ray data,’ the actual positions
of certain ions are not the positions assigned them by the symmetry. An analogy with
the alloy Cu;Au, in which a long-period superlattice is observed (Ref. 9, for example),
was used in Refs. 7 and 8.

3) Superionic # = LiAISiO, (B-eucryptite), class D. Neutron diffraction data'®
imply that even at the highest temperatures which have been reached (800 °C), there
are long-period correlations in the arrangement of the mobile ions (the reciprocal
wave vector along the hexagonal axis is ~20 Li-Li distances).

4) B-Agl, class Cg,. In order to satisfactorily explain experiments on the Raman
effect, it is necessary to assume'’ that some of the silver ions are displaced from their
ideal positions.

This list could be continued.

There is some similarity between these phenomena and those observed in choles-
teric liquid crystals (Ref. 2, for example), where again there is necessarily a “secon-
dary” periodic structure. However, even though this structure stems from a term
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which is similar to (6) in nature ( ~curl n,where n is the director), it has physically
nothing in common with the structure discussed by us in this letter (it is sufficient to
recall the condition? n?> = 1).

Finally, it is useful to note that in nature a metal without a symmetry center is a
rarity indeed (alloys such as'> Ag,Al).

-There is a need for experiments to directly identify these displacement superstruc-
tures in conductors lacking an inversion center.

I am deeply indebted to A. F. Andreev for useful critical comments and to V. M.
Belous and I. A. Fomin for interest in this study.
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