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Vortex tubes with a diameter smaller than the ion Larmor radius are generated in
an inhomogeneous plasma as a result of a dissipation involving electrons. The
mixing in these vortices may be the primary mechanism for the anomalous electron
thermal conductivity in a plasma with m/M«fF<1.

The existing theory of anomalous transport in plasmas™” predicts that supra-
thermal fluctuations of magnitude on the order of the skin length are primarily respon-
sible for the electron thermal conductivity. The reason is that at such a scale the
electrons are no longer frozen in the magnetic field. In a magnetic field with shear, in
both the linear and weakly turbulent pictures, we find a problem involving the local-
ization of wave packets. In the present letter we show that nonlinear effects in a
plasma can easily give rise to solitary structure in the form of electron vortices which
are elongated along the magnetic field and which have a transverse dimension less
than the ion Larmor radius r5; . These structures are shown to be insensitive to a shear.
Such vortices move at a velocity lower than the drift velocity, so that their amplitude
may be increased by Landau damping or by a collisional dissipation involving elec-
trons. This phenomenon is analogous to the linear drift-dissipative instability of slow
electrostatic drift wave with a length greater than 7. Analogous vortices with a
dimension much greater than ry; were found in Refs. 4 and 5. In them, the ions are
described by hydrodynamic equations. Since the size of the vortices under considera-
tion here is much less r5;, and the frequency is much less than wg,, the ion density in
the electric potential ¢ of the vortex has a Boltzmann distribution®:

n=ny(ltex— 1¢); 7= Te/Ti; ng, k = const . (1)

According to (1), the electron can be described by the following system of dimension-
less equations:
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where (2) is the electron-continuity equation, and (3) is the equation of motion of the
electrons along the magnetic field. In the case under consideration here, with the wave
velocity along z being much lower than vy, , Eq. (3) reduces to the balance equation of
the gradient pressure of the electrons and of the longitudinal electric field £ = — d¢/
dz — d4 /Jt. By analogy with Ref. 5, we transform to dimensionless variables:
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Here 4, is the component of the vector potential along the static magnetic field, ¢4 is
the Alfvén velocity, cg is the ion acoustic velocity, and A=d2/9x* + 32/dy”. The
operator v in (3) describes a dissipation by electrons in the linear approximation.
Comparing with the linear theory,” we easily see that the Fourier spectrum of this
operator is

eow = i + Kk, )1k, log, . 4)

Making use of quasineutrality, we substitute (1) into (3) and (2). Ignoring dissipa-
tion for the moment, we find a system of equations for small-scale drift waves:

TOQ /0 + K0P/ 0y = dAA/dz (3
8A4/0t — koA /oy =— (1 + 7)d¢ /dz. (6)
We seek a steady-state two-dimensional solution of (5) and (6), which is travel-

ing along y at a velocity # and which is tilted at an angle @. We then find from (6)

u+t Kk
¢ (x,n) = —— A(x,n); =y + az — ut. (7
(x, m) a1 t) (x,n); n=y u
The coefficient in (7) is found from the condition that ¢ and 4 decay at infinity. We
can thus rewrite (5) as
(& + ulr— Tu)

a1+ 1)

AA+ as’x = fl[d—ax); §* = ’ (8)
where fis an arbitrary function. We solve Eq. (8) by the Larichev-Reznik method.®’
If (8) is to have a localized solution, we must have s> > 0; this condition is met if the
propagation velocity lies in the interval between the ion drift velocity «/7 and the
electron drift velocity x. We introduce the coordinate #* = x> + #°, and we write f as a
linear function with different coeflicients inside and outside a circle of radius 7,<ry;.
The coeflicients are chosen in such a way that we find a localized solution of Eq. (8)
in the form

A = boFofr) + argFy(r)x/r. (9

Here F, and F, are functions which are, along with their first derivatives, continuous
and which are expressed in terms of Bessel functions inside the circle and modified
Hankel functions outside it.*’” At the joining boundary, r = r,, we must set 4 — ax
= const. The amplitude b,, the angle «, the radius 7, and the velocity # remain
arbitrary. Solution (9) decays as exp( — sr) at infinity.

We now examine the effect of a dissipation on this solution. We note that system
(5), (6) conserves the integral

W= f[(VlA)2 + 7(1 +7)¢*ldxdyd:z. (10}
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When dissipation is taken into account in this form, as in (3), this integral varies over
time:

dW/dt = — [ AAVE, dxdydz. (11)

Under the assumption that dissipation is slight, we can substitute solution (9) and (4)
into (11). Switching to dimensionless variables in (4), and noting that in a steady-
state vortex we have @ = uky, according to (7), we find

aW/at = als’c upl (KK, | A2 dk. (12)

We thus see that W increases over time. The amplitude b, may increase without a
change in r,, «, or u. As the amplitude increases, a plateau forms, and the Landau
damping becomes a weakly collisional dissipation.® This circumstance slows the
growth of the vortices slightly. The growth will apparently continue until the approxi-
mations used in deriving the original equations are violated, i.e., until we have ¢~ 1,
ete.

In summary, we have shown that when the nonlinearity is taken into account
packets of drift-Alfvén waves of size less than r, form vortex tubes (electron vorti-
ces), which propagate at a velocity below the drift velocity. As a result, the dissipation
by electrons leads to a buildup of these vortices to energy densities comparable to the
thermal energy density. The transport coefficients in the presence of such fluctuations
were found in Ref. 2.
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