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It is shown that MHD stability in low-pressure plasma can be achieved in simple
confinement systems by connecting them to a thin confinement system with a
curvature of opposite sign.

1. In axially symmetric confinement systems of highly simplified design (in which
the working magnetic flux is confined between the coils and the axis) the plasma with
a natural distribution of pressure which decreases toward the magnetic mirrors is
subjected to a magnetohydrodynamic flute instability.’ An example of a mirror sys-
tem, which is stable with respect to large-scale flute perturbations, was recently report-
ed in Ref. 2. This mirror system shows that there are confinement systems of the type
described above, in which the stability of all modes can be achieved upon establishing
a connection with an element with an opposite curvature sign of the lines of force. In
this letter we will identify the confinement systems that have this property. For maxi-
mum simplicity, we consider a case in which the anisotropy is strong and the trans-
verse pressure p, is considerably higher than the longitudinal pressure p; (low mirror
ratio or a disk-shaped plasma near the field minimum).

2. The magnetic configuration is shown in Fig. 1. We assume that confinement
systems 1 and 2 are linked by a plasma whose pressure is negligible but whose conduc-
tivity is high, so that the flute perturbation extends along the entire line of force of the
plasma. We also assume that 1) cell 2 is thin: |0 In B /d In p| <1 (the cell is sitnated far
from the axis and/or has a strong field) and 2) cell 1 has a strong anisotropy and the
relative variation of dB /9y along the field (where # is the flux coordinate reckoned
from the axis) is less than, or on the order of, p,/p, (this is possible if, for example,
the given confinement system has an equatorial symmetry plane; note that we have so

FIG. 1. Schematic of the configura-
tion. 1-—Principal confinement; 2—
compensating confinement; 3—con-
necting plasma; 4—-current coils.
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far not required that the confinement system be of the simplest kind). We can then
write the Kruskal-Oberman® criterion for MHD stability for a low-pressure plasma
(B=8x(p, +p;)/B*<1) in the form*

Wy +W, >0, (1)
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Here y is the longitudinal coordinate (—V)X = B), and the integration in W, , is carried
out over regions 1 and 2, respectively. Introducing a(0O<a<1) such that
(p. —py)i>a(p, +py),, we find from (1) the sufficient condition for the stability
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where p = p, + p;; the integration is carried out along the entire system, and in region
2 only dp/d is important in the combination d(p/B>**)/dy. In the limit a—0 [i.e.,
ignoring the second positive term in (3) ], expression (4) becomes the sufficient condi-
tion given in Ref. 4.

Let us assume that the plasma occupies a layer near the surface, ¥ =, , in
which" (¢ — ¢, )3(p/B*>**)/3¢<0. In this case, expression (4) is satisfied if the
pressure ratio in confinement systems 1 and 2 is such that
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along all lines of force that pass through the plasma and
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in a given layer in confinement system 1. If the plasma in element 1 is situated near the
equatorial symmetry plane, we can write (6) in the form

0 1 aB) >0 o
ar(B2"<.!r or )

Condition (6) can be expressed in terms of the characteristics of the line of force:

d"
7 + — cosf +ok? >0. (8)
r

Here r(s) is the distance from the axis, k(s) is the curvature, d(s) is the angle between
the normal to the surface 1 = const and the radial direction, s is the length along the
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line of force, d = r~'(s)B ~'(s) is the thickness of the magnetic tube of force with a
unit flux, and the prime is the derivative of s. The individual terms on the left side of
(8) can be treated in a straightforward manner. In the case of cancellation of the
average curvatures [expression (5)], the stabilization because of d ” > 0 stems from the
action of the “hidden” (against the background of the overall curvature) concavity of
the tube of force. The origin of k cos 8 /r is traceable to the fact that B /d¢ = — k /r
in (6) contains not only the curvature but also the radial coordinate, so that in the
case of y-independent curvature the derivative 8 /dy will increase with increasing ¢,
since » will increase with increasing 1. The term quadratic in & describes the effect of
the large curvature of the magnetic field.

3. Let us define concretely condition (6) for the case we are considering here, in
which cell 1 is a very simple confinement system (see Sec. 1). The vector field poten-
tial of such a confinement system is determined by a single function #(z)—the field
along the axis
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For longitudinal confinement, the function 5(z) must have a minimum between the
mirrors, say, at z = 0. For simplicity, we consider the case of the equatorial symmetry
and we restrict the analysis to the terms of the expansion in (9) that were written
down. We can then reduce (7) to

3)@&2

2/ b(0) (10)

B1V(0)> 4<1 ~

According to (10), stabilization does not require the curvature to be large, so that

it can be achieved even in the region around the axis. Condition (6) for B“~'dB /i is

not as rigorous as the inequality (B *~'dB /) /P> 0, the satisfaction of which

would result in the suppression (as in the case of Ref. 2) of the first mode in a system
with anisotropic plasma in which there is no compensating confinement system 2.

If the overall curvature cancels out, i.e., if the contribution to W from the -
independent leading term in dB /dy vanishes, then inequality (10) and, in general,
inequality (6), account for the mean magnetic well, since the derivative d’B/
A > (1 —a)B (OB /d¢)? is positive.

"We should point out that profiles with a nonzero pressure along the axis are also valid.
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