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Explicit expressions are derived for the two- and three-loop vacuum amplitudes in
the theory of oriented closed boson strings with D = 26 in terms of the theta
constants. The space of moduli is parametrized by means of period matrices.

The problem of calculating multiloop amplitudes in string theory has recently
attracted much interest. The basic *“practical” goal of this research is to prove that the
theory of superstrings is finite, although the possibility is not ruled out that a complete
understanding of the structure of the multiloop corrections would also make it possi-
ble to make progress in the solution of other problems. In any event, the model of
oriented closed boson strings (the ESVM) is a good laboratory for work in this direc-
tion.

In the present letter we derive explicit expressions for the two- and three-loop
vacuum amplitudes in the ESVM in the critical dimensionality D = 26. As has been
shown elsewhere,' this problem reduces to the search for the measure on the space M,
of complex structures of Riemann surfaces of type p (in the present letter, p = 2,3).
We know that for p>2 this space has a dimensionality 6p — 6 and is a complex mani-
fold. Analytic properties of this measure were found in Ref. 2 as functions of the
complex coordinates yi, ..., y3, 3 on M,, and it was shown that the properties
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which have been found determine the measure unambiguously with an accuracy to
within a constant factor. The basic difficulty in describing the explicit expression for
the measure in the case of arbitrary p is that we do not have a good parametrization of
the space M,. In the cases p =2, 3 (and, of course, p = 1), however, the complex
structures can be parametrized by period matrices. This circumstance and the analytic
properties of the measure which were found in Ref. 2 make it possible to express this
measure in terms of theta constants.

1. Analytic properties of the measure.” The complex coordinates y; in the space
M, are introduced in the following way.” We consider a Riemann surface S, of type
p>2 with the coordinates £ ', £ % and the metric ds* = g,, dé°d£® . Consistent with this
metric is a complex structure J V% = ¢, g®*\/g, and in the harmonic coordinates z, Z,
which satisfy the equation dz/9&° = iJ2dz/J€°, the metric would be of the form
ds® = pdzdz. We now choose a basis f; (z) (dz)%i=T,..., 3p — 3 in the space of holo-
morphic quadratic differentials on .S, and its dual basis

k2742 k= 1,..,3p~ 3
n(z,Z/dz, s s 3P

in the space of Beltrami differentials: §7*f,d *6 = F. All the complex structures close
to J'© can then be parametrized by the coordinates y;, 7;, so that a complex structure
with the coordinates y;, y; is consistent with the metric ds*(y) = p|dz + y, 7' dz|*. We
know” that y,, J; are complex-analytic coordinates on M, It was shown in Ref. 2 that
the measure in the ESVM is

Z, =1 du,. dw, = F(y)dvAF(y)dv(detlmr )~ 13

Mp (1)

dv =dy, A .. Adyap—a; p =12

where 7 is the period matrix (more on this below), and F(y)dv is a holomorphic form
on M, (3p — 3,0) which does not vanish anywhere and which has a second-order pole
at the infinities D,, g = 0,1, .. ., [p/2], of the space M, »» Where the surface S, decays
into a surface of type ¢ and p — g. Here D, contains surfaces with a degenerate handle.

2. The Spaces M, and M. The period matrix r is defined in the following way. We
consider on a surface S, of type p a symplectic basis of 2p cycles (closed, noncontrac-
table paths) a;,b,,i=1,..., p:

aioa].=biobj= 0, i# j; g ob].= P

" 2)

where O represents the algebraic number of intersections of cycles. Associated with
the basis {a;,b,} is the basis w, = @; (z)dz,i = 1,...,p of holomorphic I-differentials
which satisfy the conditions

f‘ w; = 6i].. (3)
1
The matrix
Ty = g. w; 4)
i

412 JETP Lett., Vol. 43, No. 7, 10 April 1986 Belavineta, 412

¥



is called the “period” matrix of the surface §,. We know that we have

Tix = Ty Im7 > 04 (5)
i.e., the matrices 7 lie in the space H, of all matrices that satisfy (5). It is not difficult
to show that the symplectic basis {a;,b, } is determined unambiguously by conditions
(2), and a given complex structure may correspond to matrices which can be obtained

from each other through transformations from the modular group I', = Sp(p,Z) of
integer 2p X 2p matrices

A B
M= )
CD
that satisfy AB" — BAT = CD" — DC" =04D" — BC™ = 1.Here ', actson H,, in
accordance with
M@) = (AT +B)Cr+D)" . (6)

The complex dimensionality of H, is p(p + 1)/2, and for p = 1, 2, 3 it is the same as
the dimensionality of M. In such cases, M, can be represented by the fundamental
region

G, =u,r,
of the modular group T', in the upper Siegel half-plane of H,; i.e.,
M,=G,, p=123

3. Measure for p=2,3. Using the results in Secs. 1 and 2, we can seek the measure
in the form

du, =dup:x”_p(r)r’(detlmr)f"“. (7)
Here
I — -
dv, =kn 5 d7y; Adry (det Im) (p+1) (8)
<j :

is a modular-invariant measure on H . From the condition for the invariance of (7),
under modular transformations (6) we find

Xy, - pM@)) = [det(CT+ D) 27 Px , (7). (9)
For p =2, y,o is therefore a modular form of weight 10 which has no zeros in &,.

Furthermore, at the infinity D, (7,; or 7,,—ic ) the measure Ild7; has a first-order
b

pole. It therefore follows from the analytic properties of the mea#sglure,2 which are given
in Sec. 1, that the form y, has a first-order pole at D, and a second-order pole at D,
(7,,—0). In other words, it is parabolic. The form y,, is determined unambiguously
by the weight, the order, and the positions of the zeros; it is*

X1o) = 62 ) , (10)
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where the theta constants are defined by

T
6 () z i<n+m’). n + m,)+ 2 ( +m'>Tm"]>
T) = exp(m - )T — niln + —) —
m P 2 2] 2

P 2
nez J (11)

p = 2. The components of the vectors m' and m” of the characteristic m take on the
values 0,1. The number e(m) = (m’)T-m” (mod 2) is called the “parity” of character-
istic m, and the product in (10) is over all even characteristics. For type p there are
27— 1(27 4+ 1) even characteristics and 22 — ! (27 — 1) odd characteristics, and we
have 6, =0 for e(m) = 1. Using (11), we can easily verify that y, has a first-order
zero at D, and a second-order zero at D,. It can also be shown that y,, does not vanish
in &,. There is an analogous expression for p = 3:

X3 =10, (12)

m = (m',m"),

where the product is again over all the even characteristics, of which there are now 36.
We do not have room here to present the proof. Equations (7), (10), and (12)
constitute the solution of the problem of calculating the measure in the ESVM for
type" p =2, 3.

We might also note that in the case of type 2, the space M, can be parametrized
by the coordinates (4,, A,, 1;) of the branch points of the curve

y2=z2(z~ Dz— M)z - M)z - \3) (13)
in C? = (»,2). In terms of these coordinates, the measure is

de = T dry(Xio() "

i<j
=dNdNdNs[X; 0] ¥ (0= M) ~ N5 ~ A AN
X (L=A)0 =N )1 =N )~ %8, (14)

where 7 is determined from A, 4,, and A5 by hyperelliptic integrals. In the partition
function

Zy = [AQUADS (detlmT) 13 (15)

we can integrate along each d ?4; over the entire complex plane, since we are taking
each surface into account a finite number of times (in general, 720 times).

We are indebted to A. Beilinson for a discussion.

D A less explicit expression, but for arbitrary p, was derived in Ref. 5.
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