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The distribution function of mesoscopic fluctuations of the conductance and state
density is derived through a renormalization-group analysis in the nonlinear o
model. A hypothesis of an ergodic nature is proved. A deviation from single-
parameter scaling is demonstrated.

1. A “mesoscopic” conductor is a disordered conductor which, although large in
comparison with the electron mean free path /, is not large enough that we can ignore
the difference between its characteristics and their mean values over realizations of the
random potential.'™ It has been shown*’ that the mean square value of the mesosco-
pic fluctuations, §G = G — (G ), of the total residual conductivity (the conductance)

441 0021-3640/86/070441-04%$01.00 © 1986 American Institute of Physics 441



of any sample is given in order of magnitude by
(6G?) ~ (e2/h)*, (H

where {...) means an average over the realizations of the random potential. This
result was derived in first order in a perturbation theory in g~ '=e*(*#{G )) '<1.

We know that when we calculate (G ) in a iwo-dimensional system, corrections
~g~"In(L /1), which arise in the higher orders of the perturbation theory, become
important as the size (L) of the sample increases. It is important to learn how the
summation of these corrections changes the value of (5G 2). In particular, we would
like to know whether the mesoscopic case can be described by single-parameter scal-
ing.®

Experimentally,’ mesoscopic fluctuations should be manifested as reproducible
aperiodic oscillations of G as a function of parameters such as the magnetic field H and
the Fermi energy €, (Refs. 3, 5, 7). Lee and Stone® have advanced the hypothesis of
an ergodic nature: That taking an average over H or over €,. In order to test this
hypothesis, it is necessary to analyze the higher-order correlation moments. This anal-
ysis will also cast light on the nature of the fluctuation distribution function. In the
preset letter we analyze the higher orders of the perturbation theory, and we find
answers to all these questions.

2. A regular method for constructing a perturbation theory is to take an approach
based on the nonlinear o model (see Ref. 8 and the bibliography there). Calculations
which will be published separately lead to the following expression for the correlation
function K, ,, = (v"G™) of the state density v and the conductance G in a cube of
dimensionality d (# = 1)-

Kn,m (N)(l 47rN)
I SO

X k€n<j<n+m

(2)

WN,w,h)=0
Here Z = f & Q exp( — F[0;,0]), and the generating functional F[w;h] is given in the
limit L /I— oo by

wvD - 1 g 2l .d
Flw:h] = fSpi— 5 Vo) — 4Ld'wAQ+ gﬁlh,Ql d’r, (3)

where D is the diffusion coefficient. The field Q(r) has the structure
Q=105 .y @) =0 #=0123 4)
Q*=1 Q=Q%; Sspg-=0o. (5)

The quantities 7, in (4) are quaternions: 7, = 1;7,, 3 = io,,, (the o’s are the Pauli
matrices). The “replica” indices o and 8 take on values from 1 to N (in the final
results, we have N = 0). The indices a and b, each of which takes on two values, stem
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from the presence of advanced and retarded Green’s functions of the electron in the
original expressions. We have been forced to introduce some indices (k and j) beyond
those in Ref. 8 in order to distinguish between Green’s functions referring to different
values of v and G in the correlation function K, ,,. The sources @A and h, which are
independent of r, also have the structure in (4). Here we have
(wA) = 0, 700,5(0,) 4y 0p5; h = —h™, h' =h® =0, and h° and h> are matrices which
are diagonal in terms of the indices &, j and antidiagonal in terms of a, b [the vector
indices h have been omitted from (2)].

In the calculation of K, ,,,, integrals of the type J,, where J; = fd“q/q°, arise in
first order; they lead, in particular, to the result in (1), and they also lead to a corre-
sponding result for® (+*). When the next orders are taken into account, K, . is ex-
pressed in terms of the sum over p of terms of the type (J,)"+™ ! (J,)”, and the
contributions containing J; with s>6 cancel out. The summation of series in J, is
known to be equivalent to a renormalization of charges in functional (3).

3. Although functional (3) contains three vertices, in the case & = 0 it depends
on only the renormalization group of the charge g (a dimensionless conductance). The
ratio of the charges at the first and third vertices does not change under renormaliza-
tion-group transformations by virtue of the Einstein relation g « vDL? ~ 2. The coeffi-
cient of @ AQ also escapes renormalization because of conservation of the number of
particles.® Consequently, in the expressions derived for K, ,, in the first nonvanishing
order of the perturbation theory, it is necessary to replace the nucleating charge g, by
the renormalized charge g [g =g, — In(L /I) for d = 2].

Since the charge does not appear in expression (1) for K,, (as in K, ), that
expression remains valid in all orders of the perturbation theory. The other correlation
functions depend strongly on g, i.e., on L.

4. At g> 1, the statistics of the fluctuations of G and v is approximately Gaussian.
Specifically, it can be shown that the cumulant K¢ ., which is found from (2) and (3)
by considering only coupled diagrams, is small if # + m > 2:

K L (KS ) MI2KE )M~ g (rmo) g (6)

We see from (6) that in the case g~ 1, i.e., near an Anderson transition, the distribu-
tion function of the mesoscopic fluctuations is highly non-Gaussian.

5. The asymptotic behavior of the distribution function is non-Gaussian at arbi-
trary values of g. In the calculation of K'§,, for n + m % g, it is necessary to take into
account vertices in Flw;h] in addition to those in (3). These other vertices are propor-
tional to high powers of @ and h, since the charges for these vertices, although small,
at the nucleating level, ~ (/L)% , increase rapidly under renormalization-group trans-
formations. For example, the charge ', at the vertex Sp(h,Q]** and thus K § satisfy
the proportionality

] 25 go 252 i 25 (1-58, 1)
g (D (5 2.7 "
’ 0.8 L g g>» 1\ L
An analogous growth law, first established in Ref. 10, holds for the charges for the
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vertices Sp(wAQ)° We see from the explicit functional dependence on g, in (7) that k
single-parameter scaling does not hold.

From (7) we can find the asymptotic behavior of the distribution function
f(#SG /e*) at comparatively large values of 8G:

f(x) < exp{ — AIn*(cL?/1Y}; A~' = 8In(ge/g) ~ 8g, *n(L/1). (8)

The asymptotic behavior of the distribution function of the fluctuations in the state
density, f(5vg/v), is also of the form in (8). Distribution (8) holds for §G (Ge*/
#)2, For d = 1 in the region g> 1, distribution (8) is the same as the exact distribu-
tion found previously.!!

6. According to the ergodic hypothesis we have G* = (G" ), where the superior
bar means an average over €. To test this hypothesis, it is sufficient to show that the
quantity {[{(G") — G"]°}, given by

1 e-('E

[ dede; {{G" ()G (&)~ (G™(e)) (G (E2)) }, 9
(2E) e~ E

tends toward zero with increasing E. In order to analyze correlation functions of the
type (IIG(€;)), we should add to (3) a vertex proportional to SpMQ, where M is a
matrix with the structure in (4): M = 78,58, 64;€;. Calculations from (2) and (3)
using this vertex show that the integrand in (9) falls off at least as [le, —&|L 2/
D19~—*, proving the ergodic nature. The ergodic nature can be proved with respect to L
an averaging over the magnetic field H in an analogous way. "

We are deeply indebted to D. E. Khmel'nitskii and B. I. Shklovskii for useful
discussions.
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