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Unstable, long-wave kinks in solitons are analyzed for various wave equations by
the method of Whitham (Linear and Nonlinear Waves, Wiley-Interscience, New
York, 1974). The problem is reduced to ““gas-like” equations which represent new
quasi-Chaplygin media {B. A. Trubnikov and S. K. Zhdanov, Fiz. Plazmy 12, No.
6 (1986); [Sov. J. Plasma Phys. 12, No. 6 (1986) |; Pis’'ma Zh. Eksp. Teor. Fiz. 43,
178 (1986) [JETP Lett. 43,226 (1986)1}.

1. The simplified “long-wave” version of the nonlinear evolution of transverse
modulations of solitons is interesting primarily because the set of exactly integrable
cases’ is bounded, while the number of “nonintegrable” situations, which are of no less
importance, continues to grow.*”’ In this limit the best method is the method of
Whitham,! which we will use here. This method makes it possible to go slightly
further than is possible in linear perturbation theory.®” Furthermore, a linearization of
the equations of the modulations is an alternative and frequently simpler method for
studying the linear stage. Since the basic points of this method are generally known,'
there is no need to discuss them in detail here. We will list several examples which
explain the basic situation. We will be concerned primarily with “classical” solitons,
described by the Korteweg-de Vries equation, the Kadomtsev-Petviashvili equation, a
nonlinear Schrodinger equation, and the sine Gordon equation. A theory of one-di-
mensional modulations was derived in Refs. 8.

2. As a first example we use the isotropic*’ Kadomtsev-Petviashili model (with a
positive dispersion, /2> 0),

Co _
=-—Au; Au=u,_tu, , (1)
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(u, tuu —col”u by TUgs
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to describe a transverse modulation of a single-parameter (with a fixed wavelength 4)
cnoidal Korteweg-de Vries wave® [K(m) and E(m) are elliptic integrals; m is a pa-
rameter]:
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u=uy(x, t) =—Afcn (g, m)—(cn®)); p=pl Y (x +ct); p=2KIm)I/\,

c= dcop*(2m—~1)—A{cn*Y; {cn® )=(E/K —1+m)/m; A=12mcop?. (2)

The Lagrangian corresponding to Eq. (1) is (here and below, ¢, is the velocity of
sound)
J = 1 s 2,2, ! 2 = (3)
1=ud, + 3 utcol®u, + 3 oV, ), u=d .

Integrating ., over the period A with a trial function as in (2), but with an altered
phase, ¢ = p/ ~'[x 4+ x,(z,r,) ], we find

d
= Z A al g =[xy, t c_ ('VJ_Xo) 14 +coF1(1h);

4
3

uy
Li=dy; Fi(l;)=¢ — +1%u? ).
1 1 1(1) 300 1x
Using (4), and varying the functions 7, and x;, we obtain “gas-like” equations for two-
dimensional modulations [V = ¢,V x,,F,(I,); Fig. 1]:

2 ]
5‘ Il +div(11V)=0; ‘a;‘V'f’(VV)V:_CoFl (Il)VIl (5)
t

In the soliton limit m—1, we find F,(I;) ~ — |const|/}” from (2) and (4). This
result corresponds to a “monatomic gas” with ¥ = 5/3 but with a negative compress-
ibility.? In the limit m—0 (/,—0), we have Fi =~ — (12¢31°k})""!
= const,k, = 27/A. This result differs from that derived in Ref. 5, but it is precisely
the same as the result of a direct Stokes expansion’ in the small amplitude.
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FIG. 1. The function F,(I,) for a cnoidal wave, I. = (12¢,/%k2)%k,=27/A.
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3. We know that a two-dimensional rational Kadomtsev-Petviashvili soliton,’

2

a* x+a\? oy 31%¢3
u=u(x,y,t)=-12¢ 12——1 -1 + ) + {2 ;A2= ;A2=61/2AI
2060, 0) [} 3%’ n[ A (Az) 2 20 1 2ty
' (6)

is unstable* in model (2). Let us describe the growth of kinks of this soliton in the
nonlinear stage. Integrating .%", from (3) with the trial function u,[x 4 xo(z,t)p,¢]
over the variables x and p, we find

~ + c —_
L,= '7’\(1 = [ dxdy ‘?1 =[xy, + _21 xgz]lz teoFa(ly); 1y =u3 (N

Fyr)=u3[3co +1%u} + ¢§y/2=—31§/21r’(12c01)4,

which obviously leads us to modulation equations of the type in (5). We introduce the
notation p = (¢/c;, )V/*~1, (¢, is the velocity of the unmodulated wave), and we also
introduce V = cyxo,. We then finally find

P+ V), =0; V,+VV, =cl pp,; Cor =200 Cu> (8)

i.e., a one-dimensional “gas” (y = 3) with a negative compressibility. In the linear
stage we have an aperiodic growth at a rate @’ = — k2 ¢Z;, which is the same, aside
from a change in notation, as that found in Ref. 4.

4, A similar result is found for a transverse modulation of a soliton of the nonlin-
ear Schrodinger equation, which is stable for one-dimensional perturbations.'® For the
nonlinear Schrodinger equation in dimensionless form,

1
iw,+5Aw+wlw|’=0, 9
the Lagrangian .¢°, and the soliton ¥, are
2
= ; - - =4 ol e _°
2685 = iWUT— V) FTYT* = 115 o= dpel®; dg=— g==1t (10)

Taking an average of .Z", with the trial function ¢ = 4,(x)explip(s,r, )], we find [cf.
(4]

= . ’ 1 -
Ly= &,= ] dxa=ly, + 5 (V90" )s +Fslla); I3 =43

1 = =
Fyds)= 5 |A3x ~ 4 (b
and modulation equations of the type in (5). Since I, = 24, and F, = — a’/3, the final
form of these equations is!*!?
a, +divaV=0; V,+(VV)V=aVa; V=V o. (12)

5. A 277 kink' of the sine Gordon equation, Ap — ¢,, = o sing, with the Lagran-
gian — 4osin® (¢ /2) is given by

@ =g (x +ct, A)= 4 arctan (exp}); £=(x +ct)/A; ¢® = 1—-0A?%. (13)
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Taking an average of .%’; with the trial function ¢ = @(x + x,(4,r, ),A(t,r,)); IA,,rl |

4

&|x,,1, |, we find & = X[xé, — (V.x0)* — 1 — oA?]. We then find an equation of

the following type for kink modulations (we are using the notation p = x,,/A and
V= bt V.LxO/th:

p, tdivpV =0; (7V)t+Vn=0; y=(1-V?+gp2)1/2, (14)

In the limit V<1, p> 1, Eq. (14) reduces to the dynamics of a Chaplygin gas,” which is
unstable in the case o= — 1.

6. As an example with an anisotropic dispersion, we consider the soliton in (6) of
an oblique magnetosonic wave.>® In the notation of Ref. 6, this wave obeys the equa-
tion

2 2 c? i B

et a0t e - (0 =Dy, - o (Qap, , +¢,,)l'] ==A4, .
A pe pi n

(15)

where a is the slope, 0* = (aw,, /w,;)?, and the rest of the notation is explained in

Ref. 6. After some obvious changes in notation, we can put (15) in a form close to that

of (2):

- 2 - 2 =
[”t+uux col Uxx Coll(za“zxx+uxzz)]x_

1
e ‘2— CoAllu, (16)

where /] = ¢*/2w}, and I* = (0% — 1)¢*/20?, > 0. Our purpose here is to make (6) a
nonsingular solution of (16). The Lagrangian .¥,, for (16), which generalizes (3), is
L an = g1+5z-; 5& =col§[u2—2a<1>u a7

z xx]'

In choosing the trial function we take into account the circumstance that the slope of
soliton (6) corresponds to the following substitution for Eq. (16) (x = x,, = const):

1
x>x+Kkz; c>c + — cok?; 1P > IP[1+k(k +20)11/14]) (18)
2

Consequently, in contrast with the isotropic case, in which we have /; = 0, the length /
also changes in this case when there is a kink. Taking this circumstance into account,
we find .Z,, and then nonlinear modulation equations [p=(c/c;, )"/, V=cyX,, |:

1 .
(pa), *[paV+ 5 e P41, =0; V, +VV, = i pp,;
(19)
q=q(V)=1+V? +2acoV)1}/c31%; q' =dq/dV.

The small-oscillation spectrum for these equations (¥'=0, ¢ = ¢ — ¢, =0) reduces to
that found in Ref. 6.

In conclusion we wish to emphasize that the dynamics of the modulations of
Korteweg-de Vries, Kadomtsev-Petviashvili, nonlinear-Schrédinger, and sine Gordon
solitons conforms to the general theory of quasi-Chaplygin unstable media,? as is clear
from the discussion above. It thus becomes possible to find several exact solutions, but
we do not have space to reproduce them here.
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