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The paramagnet-spin-glass phase transition in the Ising model with a transverse
field is considered. The transverse field can stabilize the paramagnetic state, in
spite of the strong quantum fluctuations in the system.

The quantum fluctuations of the order parameter are usually unimportant in the
case of second-order phase transitions in crystals. The quantum corrections to all
thermodynamics quantities, which are proportional to r, > (7, is the interaction radi-
us), vanish in the limit #,— o0, just as the classical correlation effects. If 7, is on the
order of the lattice constant, the quantum corrections will have numerically small
values.

The situation is completely different in the case of spin glasses, in which neither
the classical nor quantum correlation effects vanish even in the infinite-interaction-
radius model (the Sherington-Kirkpatrick model). The classical correlation effects,
which are generally of crucial importance, are responsible for the instability of the
ergodic phase and for the transition to spin glass. As the study of the Heisenberg
quantum model' has shown, the quantum fluctuations suppress the spin-glass state
rather strongly. In particular, they lower the transition temperature 7, by a factor of
approximately two.

Experiments on the so-called proton glasses,”> which are a mixture of ferroelec-
trics and antiferroclectrics, have recently generated several studies*® on spin glasses in
the Ising model with a transverse field, whose Hamiltonian is

H=-AZS_~- = J.S5. S. . (D)
i iz (if ) i~ ixVix

Pirc et al.* assumed the spin to be a classical spin, and Ishii and Yamamoto® studied

the quantum model with S = 1/2. This particular model describes the proton glasses.

We know that in an ordered magnetic material with Hamiltonian (1) a sufficiently

strong transverse field, A> A_, destroys the order even at T'=0. The situation is
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similar in the classical model with a random (in terms of the sign) interaction J;: A
strong field breaks off the transition* to spin glass.” Using the Thouless- Anderson-
Palmer method,® Ishii and Yamamoto® developed a theory of perturbation in A/T for
the quantum model. The corrections to the free energy in the paramagnetic phase and
the corrections to T, have been calculated. Having analyzed the structure of several
perturbation theories, Ishii and Yamamoto® concluded that the properties of the quan-
tum model are fundamentally different from those of the classical model: The quan-
tum model always gives rise to a spin glass at low temperatures, regardless of the
strength of the field.

In the present study we derive an expression for the free energy and for 7 in a
field of arbitrary strength. We will show that the assertion made by Ishii and Yama-
moto’ is incorrect; i.e., the quantum fluctuations do not stabilize the spin-glass state in
the model under consideration.

In the method of replicas, the free energy can be found by averaging the expres-
sion

! n

BF =— um - [Tr{e ‘”C"Texp(ﬁfdr E)J I S;MSE@)) 1] (2)
a=1
over the distribution J; which is assumed to be a normal distribution with a zeroth
mean value and a dispersion J/y/N, where N is the total number of spins. Here
B =T 7', risthe apparent time, #, = — AZ,,; S%,and S(r) are the operators in the
interaction representation. An average over J;; can be taken in the usual way, since the
operators can be permuted in the T-product. Following Ref. 1, we can then transform
the expression, found after taking an average, into a functional integral in the fields
Yy (r,r):
BF = — lim A[s 1 Dy“ﬂ(r T )HDy"‘"‘(T ™ EN® _11,
n-—> on (x, B8)
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We calculate integral (3) according to the method of steepest descent. In the high-
temperature phase, all the functions y “# (7,7') which satisfy the equations for the
steepest descent vanish and for the functions y *“ (+,7'), which do not depend on the
replica index at any temperature, we find

R@ ) = ;7y°‘°‘(1, ')y = <TSx('r)Sx(T')>' . (4)

An average in (4) is taken with the Hamiltonian H, + H.,,, where
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Kooy =— *25]2£(f)deT'R(‘r, )8, (S, @) (5)

To determine the transition point, we expand F in y “# (7,7')

F 2 2
[i__ﬁ 2 Rl(w) 1nspe BCY o+ 7 )
N 4
1
+lim — T 3 (y"‘"(w N 1= (BI) R*(w,)] -
n- 04nw (ag (6)

In (6) the summation is over the discrete frequencies w, = 2mn. We easily see that
R(w, ) decreases with increasing n. The equation for 7 can therefore be written as

T, = JR(w, = 0). (N

If the field A is small, A/J<1, then by expanding in A/T in (4) and (5) and substitut-
ing the result of the expansion in (7), we find

J A2l 1 ,l 1 , 1 ,
Tf;é*BZ—ﬁ £dr£dr(})’d110fd‘rg[< TS, (T)SZ (r )>Z—<TSZ ('r)Sz (r )Sz (1, )SZ (T2)>:J)-
(8)

An average in (7) is taken with the Hamiltonian H., in which we can set
R(7,7') = 1/4. Transforming the expectation values in (8) with the help of the Hub-
bard-Stratonovich identity, we then finally find

1
T, = 2[1 —16(A/)? fx*(1 — x)exp {—2x(1 —x)}dx], (9)
1]

consistent in terms of our notation with the result of Ref. 5.

Let us now consider the strong fields and low temperatures 7-0. Expanding
R(7,7) in (4) in a series in H,., we easily see that in the limit 70, this expansion is
in the parameter J /A. This means that at A/J>1 we can confine the analysis to the
first term of this expansion and

R _ 1 AT
Rln) =5 v

At A/J> 1 the right side of Eq. (7) is therefore always smaller than 7, indicating that
the paramagnetic solution is stable to within 7'= 0.

Ishii and Yamamoto® have erroneously concluded that a phase transition to a
spin glass can occur at large values of A/J because of an unjustifiable extrapolation of
an equation of the type in Ref. 8, which is valid only in perturbation theories under the
condition A&J~ T, to the limit 7—0.

"The result and the qualitative phase diagram obtained by Pirc ef al.* are correct, but the equations for the
symmetric solution derived by them are incorrect.
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