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We propose a model that lends itself to a rigorous solution for a disordered spin
system with an infinite-radius interaction, in which a phase transition into the
spin-glass state takes place and in which the heat capacity exhibits the correct
behavior at low temperatures.

PACS numbers: 75.25.4+2z, 75.10.Jm, 75.40.Fa

Dilute solutions of transition-metal atoms (Fe, Co, Mn) in paramagnetic
metals (Cu, Au) have been the object of experimental and theoretical research
‘or a number of years (see!!~3! and the references given there), These systems
1ave a large number of interesting properties, noteworthy among which is the
rery sharp peak in the plot of the magnetic susceptibility x(7) in zero field and
he linear dependence of the heat capacity on the temperature as T~ 0, with a
roefficient that does not depend on the impurity concentration. It has been clear
or quite a time that these and many other properties of these solutions are due
o the indirect RKKY (Ruderman-Kittel-Kasuya-Yoshida) interaction between
he impurity atoms via exchange of the matrix conduction electrons, and is
iven by

I(r)8;8; « J(r) = (kpr)™? cos(2hkyr), (1)

there S; are the spins of the impurity atoms and % is the Fermi momentum.
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The rapidly oscillating and weakly decreasing character of (1), as well as
random character of the distribution of the impurities, cause at sufficiently
low temperatures “freezing’” of their spins in random directions, accompanied
thus by an increase of x. The resultant magnetic structure is called spin
glass. It constitutes a ‘“‘conglomerate” of blocks of spins that are relatively
little disoriented, the total orientation of which, however, changes from block
to block in such a way that the macroscopic moment of the system turns out to
be equal to zero. It was proposed in!!! to regard this “freezing” of the spins
as a certain phase transition. But since it is unclear how to solve the statisti-
cal-physics problem corresponding to the interaction (1), it was proposed in!!!
to replace J(r,j) by independent Gaussian random quantities J;; with zero mean
value (&J;9 =0), and this, in the opinion of the authors ofttl, should simulate the
rapid oscillations (1). According to!!! this model is subject, in the self-con-~
sistent field approximation, to a phase transition accompanied by a break in
x{T), which the authors interpret as a transition to the spin-glass state. An
attempt was made in'?! to impart an asymptotically exact meaning to the re~
sults of!!! by introducing in front of J;; a factor N~'/2, in analogy with the
Curie-Weiss theory (N is the total number of sites). However, the calculations
in!?! seem to be incorrect, since, as noted by the authors themselves, they
yield a negative entropy as T—0.

We propose in this paper another model, which is asymptotically exact as
N —, in which the random exchange integrals J;; are

I
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where n; and n, are fixed numbers that which specify the number of negative-
definite (ferromagnetic) and positive-definite (antiferromagnetic) harmonics in
the interaction J;;, while f, and a, are positive parameters (coupling constants)
and aﬁk) are random and generally speaking statistically dependent quantities,
the joint distribution of which is invariant to the substitution o:{® —a/{¥ and

are such that the statistical correlations between them vanish as |i—j| — o,

By using a method that generalizes the method developed in'4!, it can be
shown that as N—, in each fixed realization of the quantities a{®, the free
energy corresponding to the interaction (2) tends to a nonrandom limit

n
min max | 1 ™1 1 2 -

- — 3 f,Fle _ Xa, A+ (ly]|)> (3)
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and F, and A, are D-dimensional vectors (order parameters), h is the ex-
ternal field, ¢(lx |) is the free energy of one spin in the field, equal to
— B 11n{2 cosh(gy)} in the Ising model (D =1), to — g1 In{lsinh(8y)l/By} in
the classical Heisenberg model (D = 3), and to — g{sinh(gy(s + 1)1/
sinh(By/2)} in the Heisenberg quantum model with spin s, where B is the
reciprocal temperature.

We consider some particular cases of (3), assuming that the probability
density p(a) of each o is given by
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TABLE L.

Quantity T, X'(Tc + 0) AX'(TC) C(T), T<< T,
Classical model, Ja 2 Dc 3D¢ D_-1
D—dimensionality - - C(T)=c¢
of spin unit vector D j? ag 72 a, 2

Quantum model, Js(s + 1)a2 -3¢ ~ 9 C( T)T_lz 2772(1(0)

s—value of spin

3 Jis(s+Dad | Is(s+Da, | 3J2<|al>g(2s+1)

Pla)=(l-c)d(a)+cqla), (4)

where gla)=0, and [ gla)do =1. This form of p{e) corresponds to the fact that
if ¢ is the impurity concentration, then each of them has a probability of ¢ or

1 - of being present or absent in any of the lattice sites. By the same token,
we have introduced into the theory the dependence on the impurity concentra-
tion, a dependence missing from!is2),

Assume that in (3) we have only f;=J =0, i.e., ny=1 and n;=0. Then, if
() =0, we arrive at the theory analogous to the molecular-field theory with a
critical temperature proportional to the concentration, T,=cJ (a2)q {a ‘)q= fatqdoe,
a spontaneous magnetization that differs from zero at T<T,, and the usual be-
havior of x(T) as T— T,+ 0, namely x =~ (@)%[@? | T—T,1 4,17, with A,=4_x2
=1 in the Ising model and in the Heisenberg quantum model (cf. 1), This is a
disordered ferromagnet (DF). On the other hand if g(o) in (4) is an even func-
tion, then the spontaneous magnetization is equal fo zero also at T<T,, which
x(T) is continuous at the point T=T, but has kink. This is spin glass. The
magnitude of the kink in x(7), which depends on the form of ¢ (y), as well as
some other characteristics of the considered models, are given in Table I,
vhere o, = (@’ =c@?, and AY' =y (T,+0) — ¥’ (T, =~ 0). It is seen from Table I
‘hat at T~ T, all the models behave qualitatively in the same manner, and the
inear behavior of the heat capacity observed at low temperatures with a slope
hat is independent of the concentration is present in the Ising model [here
(DT~ rq(0)/12J%] @ 1), as T~ 0] and in the quantum models.

Let us describe briefly also the case!) n=n;+ny=2.

a) n;=2, ny=0. There are two phase transitions. If the random quantity o
s asymmetrically distributed, then in the first transition the paramagnetic
state gives way to the disordered-ferromagnet state, while the second transi-
ion is of the DF;{ —DF, type, i.e., from one phase of the disordered-
erromagnet type to another of the same type. If, however, the a{!’ are sym-
netrical, then in the first transition the paramagnetic state gives way to a
pin-glass (SG) state, and the second transition is of the SG—DF type if the
1{?) are symmetrical and of the SG;— SG, type if the ¢{?) are symmetrical.
"he behavior of the thermodynamic quantities in the vicinity of both critical
emperatures is qualitatively the same as in the case ny=1, ny,=0 considered
bove.
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b) ni=ry=1. In a zero field, the model behaves in the same manner as at »;
=1 and ny= 0.

c) ny=0, n,=2. The model coincides with the system of interacting spins.
The results above can be used also to describe disordered systems, in which

the role of the spins is played by electric dipole moments (see, e.g., M con-
cerning such systems).

In conclusion, we are grateful to V. A, Slyusarev for interesting discussions.

DAg this paper was being readied for press, the authors learned of an article!®
dealing with a particular case of this model, when o{! and a{? each assume
two specially selected values. The method of[‘” is dlfferent in principle and does
not make it possible to deal with distributions of the type (4).
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